from the effects. Now, these problems are classified as probability of causes, and are the most interesting of all from their scientific applications. I play at écarté with a gentleman whom I know to be perfectly honest. What is the chance that he turns up the king? It is 18. This is a problem of the probability of effects. I play with a gentleman whom I do not know. He has dealt ten times, and he has turned the king up six times. What is the chance that he is a sharper? This is a problem in the probability of causes. It may be said that it is the essential problem of the experimental method. I have observed n values of x and the corresponding values of y. I have found that the ratio of the latter to the former is practically constant. There is the event; what is the cause? Is it probable that there is a general law according to which y would be proportional to x, and that small divergencies are due to errors of observation? This is the type of question that we are ever asking, and which we unconsciously solve whenever we are engaged in scientific work. I am now going to pass in review these different categories of problems by discussing in succession what I have called subjective and objective probability.
II. Probability in Mathematics.—The impossibility of squaring the circle was shown in 1885, but before that date all geometers considered this impossibility as so "probable" that the Académie des Sciences rejected without examination the, alas!