To form these equations we need not know the relations which connect the parameters q with the co-ordinates of the hypothetical molecules, nor the masses of the molecules, nor the expression of U as a function of the co-ordinates of these molecules. All we need know is the expression of U as a function of the parameters q, and that of T as a function of the parameters q and their derivatives—i.e., the expressions of the kinetic and potential energy in terms of experimental data.
One of two things must now happen. Either for a convenient choice of T and U the Lagrangian equations, constructed as we have indicated, will be identical with the differential equations deduced from experiment, or there will be no functions T and U for which this identity takes place. In the latter case it is clear that no mechanical explanation is possible. The necessary condition for a mechanical explanation to be possible is therefore this: that we may choose the functions T and U so as to satisfy the principle of least action, and of the conservation of energy. Besides, this condition is sufficient. Suppose, in fact, that we have found a function U of the parameters q, which represents one of the parts of energy, and that the part of the energy which we represent by T is a function of the parameters q and their derivatives; that it is a polynomial of the second degree with respect to its derivatives, and finally that the Lagrangian equations formed by the aid of these two functions T and U are in conformity with the data of the