the cuts are continuums of one dimension, then we shall say that C has two dimensions; if cuts of two dimensions are sufficient, we shall say that C is of three dimensions, and so on. Thus the notion of the physical continuum of several dimensions is defined, thanks to the very simple fact, that two aggregates of sensations may be distinguishable or indistinguishable.
The Mathematical Continuum of Several Dimensions.—The conception of the mathematical continuum of n dimensions may be led up to quite naturally by a process similar to that which we discussed at the beginning of this chapter. A point of such a continuum is defined by a system of n distinct magnitudes which we call its co-ordinates.
The magnitudes need not always be measurable; there is, for instance, one branch of geometry independent of the measure of magnitudes, in which we are only concerned with knowing, for example, if, on a curve ABC, the point B is between the points A and C, and in which it is immaterial whether the arc AB is equal to or twice the arc BC. This branch is called Analysis Situs. It contains quite a large body of doctrine which has attracted the attention of the greatest geometers, and from which are derived, one from another, a whole series of remarkable theorems. What distinguishes these theorems from those of ordinary geometry is that they are purely qualitative. They are still true if the figures are copied by an unskilful draughtsman, with the result that