Page:ScienceAndHypothesis1905.djvu/67

From Wikisource
Jump to navigation Jump to search
This page has been validated.

PART II.


SPACE.


CHAPTER III.


NON-EUCLIDEAN GEOMETRIES.


Every conclusion presumes premisses. These premisses are either self-evident and need no demonstration, or can be established only if based on other propositions; and, as we cannot go back in this way to infinity, every deductive science, and geometry in particular, must rest upon a certain number of indemonstrable axioms. All treatises of geometry begin therefore with the enunciation of these axioms. But there is a distinction to be drawn between them. Some of these, for example, "Things which are equal to the same thing are equal to one another," are not propositions in geometry but propositions in analysis. I look upon them as analytical à priori intuitions, and they concern me no further. But I must insist on other axioms which are special to geometry. Of these most treatises explicitly enunciate three:—(1) Only one line can pass through two points; (2) a straight line is the