geometers admit without enunciation. It is interesting to try and extract them from the classical proofs.
John Stuart Mill asserted[1] that every definition contains an axiom, because by defining we implicitly affirm the existence of the object defined. That is going rather too far. It is but rarely in mathematics that a definition is given without following it up by the proof of the existence of the object defined, and when this is not done it is generally because the reader can easily supply it; and it must not be forgotten that the word "existence" has not the same meaning when it refers to a mathematical entity as when it refers to a material object.
A mathematical entity exists provided there is no contradiction implied in its definition, either in itself, or with the propositions previously admitted. But if the observation of John Stuart Mill cannot be applied to all definitions, it is none the less true for some of them. A plane is sometimes defined in the following manner:—The plane is a surface such that the line which joins any two points upon it lies wholly on that surface. Now, there is obviously a new axiom concealed in this definition. It is true we might change it, and that would be preferable, but then we should have to enunciate the axiom explicitly. Other definitions may give rise to no less important reflections, such as, for example, that of the equality of two figures. Two
- ↑ Logic, c. viii., cf. Definitions, § 5-6. Tr.