introduced into classical proofs is greater than necessary, and it would be interesting to reduce them to a minimum. It may be asked, in the first place, if this reduction is possible—if the number of necessary axioms and that of imaginable geometries is not infinite? A theorem due to Sophus Lie is of weighty importance in this discussion. It may be enunciated in the following manner:—Suppose the following premisses are admitted: (1) space has n dimensions; (2) the movement of an invariable figure is possible; (3) p conditions are necessary to determine the position of this figure in space.
The number of geometries compatible with these premisses will be limited. I may even add that if n is given, a superior limit can be assigned to p. If, therefore, the possibility of the movement is granted, we can only invent a finite and even a rather restricted number of three-dimensional geometries.
Riemann's Geometries.—However, this result seems contradicted by Riemann, for that scientist constructs an infinite number of geometries, and that to which his name is usually attached is only a particular case of them. All depends, he says, on the manner in which the length of a curve is defined. Now, there is an infinite number of ways of defining this length, and each of them may be the starting-point of a new geometry. That is perfectly true, but most of these definitions are incompatible with the movement of a variable figure such as we assume to be possible in Lie's theorem.