Page:ScienceAndHypothesis1905.djvu/82

From Wikisource
Jump to navigation Jump to search
This page has been validated.

continual revision. Nay, it would from that day forth be proved to be erroneous, for we know that no rigorously invariable solid exists. The geometrical axioms are therefore neither synthetic à priori intuitions nor experimental facts. They are conventions. Our choice among all possible conventions is guided by experimental facts; but it remains free, and is only limited by the necessity of avoiding every contradiction, and thus it is that postulates may remain rigorously true even when the experimental laws which have determined their adoption are only approximate. In other words, the axioms of geometry (I do not speak of those of arithmetic) are only definitions in disguise. What, then, are we to think of the question: Is Euclidean geometry true? It has no meaning. We might as well ask if the metric system is true, and if the old weights and measures are false; if Cartesian co-ordinates are true and polar co-ordinates false. One geometry cannot be more true than another; it can only be more convenient. Now, Euclidean geometry is, and will remain, the most convenient: 1st, because it is the simplest, and it is not so only because of our mental habits or because of the kind of direct intuition that we have of Euclidean space; it is the simplest in itself, just as a polynomial of the first degree is simpler than a polynomial of the second degree; 2nd, because it sufficiently agrees with the properties of natural solids, those bodies which we can compare and measure by means of our senses.