Page:Scientific Memoirs, Vol. 1 (1837).djvu/376

From Wikisource
Jump to navigation Jump to search
There was a problem when proofreading this page.
364
M. CLAPEYRON ON THE MOTIVE POWER OF HEAT.

deducible from them; if then we take two of them, and for example, as independent variables, the two others and may be considered as functions of the former two.

In what manner the quantities , , and , vary with respect to each other may be ascertained by direct experiments upon the elasticity and dilatability of bodies; it is thus that Mariotte's law relative to the elasticity of the gases, and Gay Lussac's relative to their dilatability, lead to the equation


all that remains is to determine in functions of and .

A relation exists between the functions and , which may be deduced from principles analogous to those which we have just established. Let us increase the temperature of the body by the infinitely small quantity , and at the same time prevent the increase of the volume; the pressure will then be augmented; if we represent the volume by the absciss (fig. 5), and the primitive pressure by the ordinate , this

Fig. 5.

augmentation of pressure may be represented by the quantity , which will be of the same order as the increase of temperature to which it is owing, that is infinitely small.

Now we will take a source of heat , maintained at the temperature , and allow the volume to increase by the quantity ; the presence of the source , maintained at the temperature , prevents the reduction of the temperature. During this contact, the quantity of heat that the body possesses will increase by the quantity , which will be derived from the source . We will afterwards remove the source , and the given body will become cool by the quantity , at the same time retaining the volume . The pressure will then diminish by the infinitely small quantity .

The temperature of the body being thus reduced to , which is that of the source of heat , we will take , and reduce the volume of the