Note D.—Page 680.
We have represented the solution of these two equations, with every detail, in a diagram[1] similar to those used in Note B.; but additional explanations are requisite, partly in order to make this more complicated case perfectly clear, and partly for the comprehension of certain indications and notations not used in the preceding diagrams. Those who may wish to understand Note G. completely, are recommended to pay particular attention to the contents of the present Note, or they will not otherwise comprehend the similar notation and indications when applied to a much more complicated case.
In all calculations, the columns of Variables used may be divided into three classes:—
1st. Those on which the data are inscribed:
2ndly. Those intended to receive the final results:
3dly. Those intended to receive such intermediate and temporary combinations of the primitive data as are not to be permanently retained, but are merely needed for working with, in order to attain the ultimate results. Combinations of this kind might properly be called secondary data. They are in fact so many successive stages towards the final result. The columns which receive them are rightly named Working-Variables, for their office is in its nature purely subsidiary to other purposes. They develope an intermediate and transient class of results, which unite the original data with the final results.
The Result-Variables sometimes partake of the nature of Working-Variables. It frequently happens that a Variable destined to receive a final result is the recipient of one or more intermediate values successively, in the course of the processes. Similarly, the Variables for data often become Working-Variables, or Result-Variables, or even both in succession. It so happens, however, that in the case of the present equations the three sets of offices remain throughout perfectly separate and independent.
It will be observed, that in the squares below the Working-Variables nothing is inscribed. Any one of these Variables is in many cases destined to pass through various values successively during the performance of a calculation (although in these particular equations no instance of this occurs). Consequently no one fixed symbol, or combination of symbols, should be considered as properly belonging to a merely Working-Variable; and as a general rule their squares are left blank. Of course in this, as in all other cases where we mention a general rule, it is understood that many particular exceptions may be expedient.
In order that all the indications contained in the diagram may be completely understood, we shall now explain two or three points, not hitherto touched on. When the value on any Variable is called into use, one of two consequences may be made to result. Either the value may return to the Variable after it has been used, in which case it is ready for a second use if needed; or the Variable may be made zero. (We are of course not considering a third case, of not unfrequent occurrence, in which the same Variable is destined to receive the result of the very operation which it has just supplied with a number.) Now the ordinary rule is, that the value returns to the Variable; unless it has been foreseen that no use for that value can recur, in which case
- ↑ See the diagram of page 711.