Page:Scientific Papers of Josiah Willard Gibbs.djvu/31

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
JOSIAH WILLARD GIBBS
xxiii

Professor Gibbs returned to a theme closely connected with the subjects of his earliest publications. In these he had been concerned with the development of the consequences of the laws of thermodynamics which are accepted as given by experience; in this empirical form of the science, heat and mechanical energy are regarded as two distinct entities, mutually convertible of course with certain limitations, but essentially different in many important ways. In accordance with the strong tendency toward unifications of causes, there have been many attempts to bring these two things under the same category; to show, in fact, that heat is nothing more than the purely mechanical energy of the minute particles of which all sensible matter is supposed to be made up, and that the extra-dynamical laws of heat are consequences of the immense number of independent mechanical systems in any body,—a number so great that, to human observation, only certain averages and most probable effects are perceptible. Yet in spite of dogmatic assertions, in many elementary books and popular expositions, that "heat is a mode of molecular motion," these attempts have not been entirely successful, and the failure has been signalized by Lord Kelvin as one of the clouds upon the history of science in the nineteenth century. Such investigations must deal with the mechanics of systems of an immense number of degrees of freedom and (since we are quite unable in our experiments to identify or follow individual particles), in order to compare the results of the dynamical reasoning with observation, the processes must be statistical in character. The difficulties of such processes have been pointed out more than once by Maxwell, who, in a passage which Professor Gibbs often quoted, says that serious errors have been made in such inquiries by men whose competency in other branches of mathematics was unquestioned.

On account, then, of the difficulties of the subject and of the profound importance of results which can be reached by no other known method, it is of the utmost consequence that the principles and processes of statistical mechanics should be put upon a firm and certain foundation. That this has now been accomplished there can be no doubt, and there will be little excuse in the future for a repetition of the errors of which Maxwell speaks; moreover, theorems have been discovered and processes devised which will render easier the task of every future student of this subject, as the work of Lagrange did in the case of ordinary mechanics.

The greater part of the book is taken up with this general development of the subject without special reference to the problems of rational thermodynamics. At the end of the twelfth chapter the author has in his hands a far more perfect weapon for attacking such problems than any previous investigator has possessed, and its