Page:Scientific Papers of Josiah Willard Gibbs.djvu/416

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
380
VAPOR-DENSITIES.

objection would apply to the supposition of any error in the determination of the weight of the flask when filled with air alone.) But if we should attribute the divergences to an impurity which diminishes the density (as air), we should be driven to the conclusion that the first series of Deville and Troost gives the most correct results, and that all the best attested numbers at temperatures below 90° are considerably in the wrong. It does not seem possible to account for these discrepancies by any causes which would apply to cases of normal or constant density. They are illustrations of the general fact that when the density varies rapidly with the temperature, determinations of density for the same temperature and pressure by different observers, or different determinations by the same observer, exhibit discordances which are entirely of a different order of magnitude from those which occur with substances of normal or constant densities, or which occur with the same substance at temperatures at which the density approaches a constant value. In some cases such results may be accounted for by carelessness on the part of the observers, not controlled by a comparison of the result with a value already known. But such an explanation is inadequate to explain the general fact, and evidently inadmissible in the present case.

It is probable that these discrepancies are in part attributable to a circumstance which has been noticed by M. Wurtz, in his account of his experiments upon the vapor-density of bromhydrate of amylene, in the following words:—"Le temps pendant lequel la vapeur est maintenue à la temperature où l'on détermine la densité n'est pas sans influence sur les nombres obtenus. C'est ce qui result des deux expériences faites à 225 degrés avec des produits identiques. Dans la première, la vapeur a été portée rapidement à 225 degrés. Dans la seconde elle a été maintenue pendant dix minutes à cette température. On voit que les nombres trouvés pour les densités ont été fort differénts. (The numbers were 4.69 and 3.68 respectively.) Ce résultat ne doit point surprendre si l'on considere que le phénomène de decomposition de la vapeur doit absorber de la chaleur, et que les quantités de chaleur necessaires pour produire et la dilatation et la décomposition ne sauraient être fournies instantanément."[1]

It is not difficult to form an estimate of the quantities of heat which come into play in such cases. With respect to peroxide of nitrogen, it was estimated in the paper already cited that the heat absorbed in the conversion of a unit of N2O4 into NO2 under constant pressure is represented by 7181 . (The heat is supposed to be measured in units of mechanical work.) Now the external

  1. Comptes Rendus, t. lx, p. 730.