against the sea by a huge wall of débris, was transformed into a vast fresh-water lake. The first effect of the thawing process must have been to separate the glacier from its foundation, raising it from immediate contact with the valley bottom, and thus giving room for the accumulation of a certain amount of water beneath it; while the valley as a whole would still be occupied by the glacier. In this shallow sheet of water under the ice, and protected by it from any violent disturbance, those finer triturated materials always found at a glacier bottom, and ground sometimes to powder by its action, would be deposited, and gradually transformed from an unstratified paste containing the finest sand and mud, together with coarse pebbles and gravel, into a regularly stratified formation. In this formation the coarse materials would of course fall to the bottom, while the most minute would settle above them. It is at this time and under such circumstances that I believe the first formation of the Amazonian Valley, with the coarse, pebbly sand beneath, and the finely laminated clays above, to have been accumulated.
I shall perhaps be reminded here of my fossil leaves, and asked how any vegetation would be possible under such circumstances. But it must be remembered, that, in considering all these periods, we must allow for immense lapses of time and for very gradual changes; that the close of this first period would be very different from its beginning; and that a rich vegetation springs on the very borders of the snow and ice fields in Switzerland. The fact that these were accumulated in a glacial basin would, indeed, at once account for the traces of vegetable life, and for the absence, or at least the great scarcity, of animal remains in these deposits. For while fruits may ripen and flowers bloom on the very edge of the glaciers, it is also well known that the fresh-water lakes formed by the melting of the ice are singularly deficient in life. There are indeed hardly any animals to be found in glacial lakes.
The second formation belongs to a later period, when, the whole body of ice being more or less disintegrated, the basin contained a larger quantity of water. Beside that arising from the melting of the ice, this immense valley bottom must have received, then as now, all which was condensed from the atmosphere above, and poured into it in the form of rain or dew. Thus an amount of water equal to that now flowing in from all the tributaries of the main stream must have been rushing towards the axis of the valley, seeking its natural level, but spreading over a more extensive surface than now, until, finally gathered up as separate rivers, it flowed in distinct beds. In its general movement toward the central and lower part of the valley, the broad stream would carry along all the materials small enough to be so transported, as well as those so minute as to remain suspended in the waters. It would gradually deposit them in the valley bottom in horizontal beds, more or less regular, or here and there, wherever eddies gave rise to more rapid and irregular currents, characterized by torrential stratification. Thus has been consolidated in the course of ages that continuous sand formation spreading over the whole Amazonian basin, and attaining a thickness of eight hundred feet.
While these accumulations were taking place within this basin, it must not be forgotten that the sea was beating against its outer walls,—against that gigantic moraine which I suppose to have closed it at its eastern end. It would seem that, either from this cause, or perhaps in consequence of some turbulent action from within, a break was made in this defence, and the waters rushed violently out. It is very possible that the waters, gradually swollen at the close of this period by the further melting of the ice, by the additions poured in from lateral tributaries, by the rains, and also by the filling of the basin with loose materials, would overflow, and thus contribute to destroy