A second way to express this risk is to focus on specific large-scale changes in Earth or biological systems that could be triggered and locked in by GHG concentrations rising beyond a certain point. At higher climate sensitivities, the larger temperature response to atmospheric GHG concentrations would make it even more likely that we would cross temperature-related tipping points in the climate system. The potential for additional releases of methane, a potent GHG, from thawing permafrost, thus creating a positive feedback to further increase temperatures, is an example of such a tail risk event. Higher carbon dioxide concentrations in the atmosphere, by increasing the acidity of the oceans, could also trigger and lock in permanent changes to ocean ecosystems, such as diminished coral reef-building, which decreases biodiversity supported on reefs and decreases the breakwater effects that protect shorelines. The probability of significant negative effects from ocean acidification can be increased by other stressors such as higher temperatures and overfishing.
The box summarizes some of these potential large-scale events, which are sometimes also referred to as “abrupt” because they occur in a very brief period of geological time. These events are sufficiently large-scale they have the potential for severely disrupting ecosystems and human societies, and thus are sometimes referred to as catastrophic outcomes.
21