Jump to content

Page:The Cost of Delaying Action to Stem Climate Change.pdf/5

From Wikisource
This page has been proofread, but needs to be validated.

Delaying Climate Policies Increases Costs

Delaying climate policies avoids or reduces expenditures on new pollution control technologies in the near term. But this short-term advantage must be set against the disadvantages, which are the costs of delay. The costs of delay are driven by fundamental elements of climate science and economics. Because the lifetime of CO2 in the atmosphere is very long, if a mitigation policy is delayed, it must take as its starting point a higher atmospheric concentration of CO2. As a result, delayed mitigation can result in two types of cost, which we would experience in different proportions depending on subsequent policy choices.

First, if delay means an increase in the ultimate end-point concentration of CO2, then delay will result in additional warming and additional economic damages resulting from climate change. As is discussed in Section II, economists who have studied the costs of climate change find that temperature increases of 2° Celsius above preindustrial levels or less are likely to result in aggregate economic damages that are a small fraction of GDP. This small net effect masks important differences in which some regions could benefit somewhat from this warming while other regions could experience net costs. But global temperatures have already risen nearly 1° above preindustrial levels, and it will require concerted effort to hold temperature increases to within the narrow range consistent with small costs.[1] For temperature increases of 3° Celsius or more above preindustrial levels, the aggregate economic damages from climate change are expected to increase sharply.

Delay that causes a climate target to be missed creates large estimated economic damages. For example, a calculation in Section II of this report, based on a leading climate model (the DICE model as reported in Nordhaus 2013), shows that if a delay causes the mean global temperature increase to stabilize at 3° Celsius above preindustrial levels, instead of 2°, that delay will induce annual additional damages of approximately 0.9 percent of global output, as shown in Figure 1.[2] To put this percentage in perspective, 0.9 percent of estimated 2014 U.S. GDP is approximately $150 billion.[3] The next degree increase, from 3° to 4°, would incur greater additional annual costs of approximately 1.2 percent of global output. These costs are not one-time: they are incurred year after year because of the permanent damage caused by additional climate change resulting from the delay.

4

  1. The Working Group III contribution to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (IPCC WG III AR5 2014) does not analyze scenarios producing temperatures in 2100 less than 1.5 Celsius above preindustrial, because this is considered so difficult to achieve.
  2. Nordhaus (2013) stresses that these estimates “are subject to large uncertainties…because of the difficulty of estimating impacts in areas such as the value of lost species and damage to ecosystems.” (pp. 139-140).
  3. These percentages apply to gross world output and the application of them to U.S. GDP is illustrative.