work must not be considered from the point of view of the direct usefulness of it. It must be done for itself, for the beauty of science, and then there is always the chance that a scientific discovery may become like the radium a benefit for humanity.
But science is not rich, it does not dispose of important means, it does not generally meet recognition before the material usefulness of it has been proved. The factories produce many grams of radium every year, but the laboratories have very small quantities. It is the same for my laboratory and I am very grateful to the American women who wish me to have more of radium and give me the opportunity of doing more work with it.
The scientific history of radium is beautiful. The properties of the rays have been studied very closely. We know that particles are expelled from radium with a very great velocity near to that of the light. We know that the atoms of radium are destroyed by expulsion of these particles, some of which are atoms of helium. And in that way it has been proved that the radioactive elements are constantly disintegrating and that they produce at the end ordinary elements, principally helium and lead. That is, as you see, a theory of transformation of atoms which are not stable, as was believed before, but may undergo spontaneous changes.
Radium is not alone in having these properties. Many having other radioelements are known already, the polonium, the mesothorium, the radiothorium, the actinium. We know also radioactive gases, named emanations. There is a great variety of substances and effects in radioactivity. There is always a vast field left to experimentation and I hope that we may have some beautiful progress in the following years. It is my earnest desire that some of you should carry on this scientific work and keep for your ambition the determination to make a permanent contribution to science.
M. Curie.