all thorium compounds, but other elements were not found active, nor were their compounds. As for the uranium and thorium compounds, I found that they were active in proportion to their uranium or thorium content. The more uranium or thorium, the greater the activity, the activity being an atomic property of the elements, uranium and thorium.
Then I took up measurements of minerals and I found that several of those which contain uranium or thorium or both were active. But then the activity was not what I could expect, it was greater than for uranium or thorium compounds like the oxides which are almost entirely composed of these elements. Then I thought that there should be in the minerals some unknown element having a much greater radioactivity than uranium or thorium. And I wanted to find and to separate that element, and I settled to that work with Professor Curie. We thought it would be done in several weeks or months, but it was not so. It took many years of hard work to finish that task. There was not one new element, there were several of them. But the most important is radium which could be separated in a pure state.
All the tests for the separation were done by the method of electrical measurements with some kind of electroscope. We just had to make chemical separations and to examine all products obtained with respect to their activity. The product which retained the radioactivity was considered as that one which had kept the new element; and, as the radioactivity was more strong in some products, we knew that we had succeeded in concentrating the new element. The radioactivity was used in the same way as a spectroscopical test.
The difficulty was that there is not much radium in a mineral; this we did not know at the beginning. But we now know that there is not even one part of radium in a million parts of good ore. And too, to get a small quantity of pure radium salt, one is obliged to work up a huge quantity of ore. And that was very hard in a laboratory.