away, the whole tube burst with a violent explosion, except the small end in a cloth in my hand, where the euchlorine previously lay, but the fluid had all disappeared.
Nitrous oxide.
Some nitrate of ammonia, previously made as dry as could be by partial decomposition, by heat in the air, was sealed up in a bent tube, and then heated in one end, the other being preserved cool. By repeating the distillation once or twice in this way, it was found, on after-examination, that very little of the salt remained undecomposed. The process requires care. I have had many explosions occur with very strong tubes, and at considerable risk.
When the tube is cooled, it is found to contain two fluids, and a very compressed atmosphere. The heavier fluid on examination proved to be water, with a little acid and nitrous oxide in solution; the other was nitrous oxide. It appears in a very liquid, limpid, colourless state; and so volatile that the warmth of the hand generally makes it disappear in vapour. The application of ice and salt condenses abundance of it into the liquid state again. It boils readily by the difference of temperature between 50° and 0°. It does not appear to have any tendency to solidify at -10°. Its refractive power is very much less than that of water, and less than any fluid that has yet been obtained in these experiments, or than any known fluid. A tube being opened in the air, the nitrous oxide immediately burst into vapour. Another tube opened under water, and the vapour collected and examined, it proved to be nitrous oxide gas. A gage being introduced into a tube, in which liquid nitrous oxide was afterwards produced, gave the pressure of its vapour as equal to above 50 atmospheres at 45°.