to perbromide of phosphorus[1] about one-third of its bulk of water in a proper distillatory apparatus formed of glass tube, and then applying heat to distil off the gaseous acid. This being sent into a very cold receiver, was condensed into a liquid, which being rectified by a second distillation, was then experimented with.
Hydrobromic acid condenses into a clear colourless liquid at 100° below 0°, or lower, and has not the pressure of one atmosphere at the temperature of the carbonic acid bath in air. It soon obstructs and renders the motion of the mercury in the air-gauge irregular, so that I did not obtain a measure of its elastic force; but it is less than that of muriatic acid. At and below the temperature of -124° Fahr. it is a solid, transparent, crystalline body. It does not freeze until reduced much lower than this temperature; but being frozen by the carbonic acid bath in vacuo, it remains a solid until the temperature in rising attains to -124°.
Fluosilicon.—I found that this substance in the gaseous state might be brought in contact with the oil and metal of the pumps, without causing injury to them, for a time sufficiently long to apply the joint process of condensation already described. The substance liquefied under a pressure of about nine atmospheres at the lowest temperature, or at 160° below 0°; and was then clear, transparent, colourless, and very fluid like hot ether. It did not solidify at any temperature to which I could submit it. I was able to preserve it in the tube until the
- ↑ The bromides of phosphorus are easily made without risk of explosion. If a glass tube be bent so as to have two depressions, phosphorus placed in one and bromine in the other; then by inclining the tube, the vapour of bromine can be made to flow gradually on to, and combine with, the phosphorus. The fluid protobromide is first formed, and this is afterwards converted into solid perbromide. The excess of bromine may be dissipated by the careful application of heat.