Page:The Meaning of Relativity - Albert Einstein (1922).djvu/24

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
12
THE MEANING OF RELATIVITY

where we have written

These are the equations of straight lines with respect to a second Cartesian system of co-ordinates . They have the same form as the equations with respect to the original system of co-ordinates. It is therefore evident that straight lines have a significance which is independent of the system of co-ordinates. Formally, this depends upon the fact that the quantities are transformed as the components of an interval, . The ensemble of three quantities, defined for every system of Cartesian co-ordinates, and which transform as the components of an interval, is called a vector. If the three components of a vector vanish for one system of Cartesian co-ordinates, they vanish for all systems, because the equations of transformation are homogeneous. We can thus get the meaning of the concept of a vector without referring to a geometrical representation. This behaviour of the equations of a straight line can be expressed by saying that the equation of a straight line is co-variant with respect to linear orthogonal transformations.

We shall now show briefly that there are geometrical entities which lead to the concept of tensors. Let be the centre of a surface of the second degree, any point on the surface, and the projections of the interval upon the co-ordinate axes. Then the equation of the surface is