where we have written
|
These are the equations of straight lines with respect to a second Cartesian system of co-ordinates . They have the same form as the equations with respect to the original system of co-ordinates. It is therefore evident that straight lines have a significance which is independent of the system of co-ordinates. Formally, this depends upon the fact that the quantities are transformed as the components of an interval, . The ensemble of three quantities, defined for every system of Cartesian co-ordinates, and which transform as the components of an interval, is called a vector. If the three components of a vector vanish for one system of Cartesian co-ordinates, they vanish for all systems, because the equations of transformation are homogeneous. We can thus get the meaning of the concept of a vector without referring to a geometrical representation. This behaviour of the equations of a straight line can be expressed by saying that the equation of a straight line is co-variant with respect to linear orthogonal transformations.
We shall now show briefly that there are geometrical entities which lead to the concept of tensors. Let be the centre of a surface of the second degree, any point on the surface, and the projections of the interval upon the co-ordinate axes. Then the equation of the surface is
|