ment based upon the principle of inertia? The weakness of the principle of inertia lies in this, that it involves an argument in a circle: a mass moves without acceleration if it is sufficiently far from other bodies; we know that it is sufficiently far from other bodies only by the fact that it moves without acceleration. Are there, in general, any inertial systems for very extended portions of the space-time continuum, or, indeed, for the whole universe? We may look upon the principle of inertia as established, to a high degree of approximation, for the space of our planetary system, provided that we neglect the perturbations due to the sun and planets. Stated more exactly, there are finite regions, where, with respect to a suitably chosen space of reference, material particles move freely without acceleration, and in which the laws of the special theory of relativity, which have been developed above, hold with remarkable accuracy. Such regions we shall call "Galilean regions." We shall proceed from the consideration of such regions as a special case of known properties.
The principle of equivalence demands that in dealing with Galilean regions we may equally well make use of non-inertial systems, that is, such co-ordinate systems as, relatively to inertial systems, are not free from acceleration and rotation. If, further, we are going to do away completely with the difficult question as to the objective reason for the preference of certain systems of co-ordinates, then we must allow the use of arbitrarily moving systems of co-ordinates. As soon as we make this attempt seriously
- 5