You will not.
And, for all these reasons, arithmetic is a kind of knowledge in which the best natures should be trained, and which must not be given up.
I agree.
Let this then be made one of our subjects of education. And next, shall we inquire whether the kindred science also concerns us?
You mean geometry?
Exactly so.
Clearly, he said, we are concerned with that part of geometry which relates to war; for in pitching a camp or taking up a position or closing or extending the lines of an army, or any other military manœuvre, whether in actual battle or on a march, it will make all the difference whether a general is or is not a geometrician.
Yes, I said, but for that purpose a very little of either geometry or calculation will be enough; the question relates rather to the greater and more advanced part of geometry—whether that tends in any degree to make more easy the vision of the idea of good; and thither, as I was saying, all things tend which compel the soul to turn her gaze toward that place, where is the full perfection of being, which she ought, by all means, to behold.
True, he said.
Then if geometry compels us to view being, it concerns us; if becoming only, it does not concern us?
Yes, that is what we assert.
Yet anybody who has the least acquaintance with geometry will not deny that such a conception of the science is in flat contradiction to the ordinary language of geometricians.
How so?
They have in view practice only, and are always speaking, in a narrow and ridiculous manner, of squaring and extending and applying and the like—they confuse the necessities of geometry with those of daily life; whereas knowledge is the real object of the whole science.
Certainly, he said.
Then must not a further admission be made?
What admission?