decreased to the minimum consistent with the initial moment of momentum. This principle we shall find very fecund in its application. It means that our whole system is evolving in a way to lessen its energy of motion while keeping its quantity of motion unchanged. The universe always does a thing with the least possible expenditure of force and gets rid of its superfluous energy by parting with it to space. Philosophers may wrangle over its being the best possible of worlds, but it is incontrovertibly mechanically the laziest, which a pessimistic friend of mine says proves it the best.
Now this generalization finds immediate use in explaining certain features of the solar system. In looking over the congruities it will be seen that deviation from the principal plane of the system or departure from a circular orbit is always associated with smallness in size. The insignificant bodies are the erratic ones. Now it has been shown mathematically in several different ways that when small particles collect into a larger mass, the collisions tend to make the resultant orbit of the combination both more circular and more conformant to the general plane than its constituents. But we may see this more forthrightly by means of the general principle enunciated above. For in fact both results are direct outcomes of the conservation of moment of momentum. Given a certain moment of momentum for the system, the total energy of the bodies