these marks and the centre A, draw a line extending to the two sides of the circumference at the points P and Q. This will be a line perpendicular to the equinoctial ray, and it is called in mathematical figures the axis. From these same centres open the compasses to the ends of the diameters, and describe semicircles, one of which will be for summer and the other for winter.
6 Then, at the points at which the parallel lines cut the line called the horizon, the letter S is to be on the right and the letter V on the left, and from the extremity of the semicircle, at the point G, draw a line parallel to the axis, extending to the lefthand semicircle at the point H. This parallel line is called the Logotomus. Then, centre the compasses at the point where the equinoctial ray cuts that line, at the letter D, and open them to the point where the summer ray cuts the circumference at the letter H. From the equinoctial centre, with a radius extending to the summer ray, describe the circumference of the circle of the months, which is called Menaeus. Thus we shall have the figure of the analemma.
7 This having been drawn and completed, the scheme of hours is next to be drawn on the baseplates from the analemma, according to the winter lines, or those of summer, or the equinoxes, or the months, and thus many different kinds of dials may be laid down and drawn by this ingenious method. But the result of all these shapes and designs is in one respect the same: namely, the days of the equinoxes and of the winter and summer solstices are always divided into twelve equal parts. Omitting details, therefore, — not for fear of the trouble, but lest I should prove tiresome by writing too much, — I will state by whom the different classes and designs of dials have been invented. For I cannot invent new kinds myself at this late day, nor do I think that I ought to display the inventions of others as my own. Hence, I will mention those that have come down to us, and by whom they were invented.