Radio-activity/Chapter 14

From Wikisource
Jump to navigation Jump to search

CHAPTER XIV.

RADIO-ACTIVITY OF THE ATMOSPHERE AND OF ORDINARY MATERIALS.


273. Radio-activity of the atmosphere. The experiments of Geitel[1] and C. T. R. Wilson[2] in 1900 showed that a positively or negatively charged conductor placed inside a closed vessel gradually lost its charge. This loss of charge was shown to be due to a small ionization of the air inside the vessel. Elster and Geitel also found that a charged body exposed in the open air lost its charge rapidly, and that the rate of discharge was dependent on the locality and on atmospheric conditions. A more detailed description and discussion of these results will be given later in section 284.

In the course of these experiments, Geitel observed that the rate of discharge increased slightly for some time after the vessel had been closed. He considered that this might possibly be due to the existence of some radio-active substances in the air, which produced excited activity on the walls of the vessel and so increased the rate of dissipation of the charge. In 1901 Elster and Geitel[3] tried the bold experiment of seeing whether it were possible to extract a radio-active substance from the air. The experiments of the writer had shown that the excited radio-activity from the thorium emanation could be concentrated on the negative electrode in a strong electric field. This result indicated that the carriers of the radio-activity had a positive charge of electricity. Elster and Geitel therefore tried an experiment to see whether positively charged carriers, possessing a similar property, were present in the atmosphere. For this purpose a cylinder of wire-netting, charged negatively to 600 volts, was exposed for several hours in the open air. The cylinder was then removed, and quickly placed in a large bell-jar, inside which was placed an electroscope to detect the rate of discharge. It was found that the rate of discharge was increased to a slight extent. In order to multiply the effect a wire about 20 metres in length was exposed at some height from the ground, and was kept charged to a high potential by connecting it to the negative terminal of an influence machine. After exposure for some hours, this wire was removed and placed inside the dissipation vessel. The rate of discharge was found to be increased many times by the presence of the wire. No increase was observed when the wire was charged positively instead of negatively. The results also showed that the radio-active matter could be removed from the wire in the same way as from a wire made active by exposure in the presence of the thorium emanation. A piece of leather moistened with ammonia was rubbed over the active wire. On testing the leather, it was found to be strongly radio-active. When a long wire was used, the amount of activity obtained on the leather was comparable with that possessed by a gram of uranium oxide.

The activity produced on the wire was not permanent, but disappeared to a large extent in the course of a few hours. The amount of activity produced on a wire of given size, exposed under similar conditions, was independent of the material of the wire. Lead, iron and copper wires gave about equal effects.

The amount of activity obtained was greatly increased by exposing a negatively charged wire in a mass of air which had been undisturbed for a long time. Experiments were made in the great cave of Wolfenbüttel, and a very large amount of activity was observed. By transferring the activity to a piece of leather it was found that the rays could appreciably light up a screen of barium platinocyanide in the dark[4]. The rays also darkened a photographic plate through a piece of aluminium 0·1 mm. in thickness. These remarkable experiments show that the excited radio-activity obtained from the atmosphere is very similar in character to the excited activity produced by the emanations of radium and thorium. No investigators have contributed more to our knowledge of the radio-activity and ionization of the atmosphere than Elster and Geitel. The experiments here described have been the starting-point of a series of researches by them and others on the radio-active properties of the atmosphere, which have led to a great extension of our knowledge of that important subject.

Rutherford and Allan[5] determined the rate of decay of the excited activity produced on a negatively charged wire exposed in the open air. A wire about 15 metres long was exposed in the open air, and kept charged by an influence machine to a potential of about -10,000 volts. An hour's exposure was sufficient to obtain a large amount of excited activity on the wire. The wire was then rapidly removed and wound on a framework which formed the central electrode in a large cylindrical metal vessel. The ionization current for a saturation voltage was measured by means of a sensitive Dolezalek electrometer. The current, which is a measure of the activity of the wire, was found to diminish according to an exponential law with the time, falling to half value in about 45 minutes. The rate of decay was independent of the material of the wire, of the time of exposure, and of the potential of the wire.

An examination was also made of the nature of the rays emitted by the radio-active wire. For this purpose a lead wire was made radio-active in the manner described, and then rapidly wound into the form of a flat spiral. The penetrating power of the rays was tested in a vessel similar to that shown in Fig. 17. Most of the ionization was found to be due to some very easily absorbed rays, which were of a slightly more penetrating character than the α rays emitted from a wire made active by the radium or thorium emanations. The intensity of the rays was cut down to half value by about 0·001 cm. of aluminium. The photographic action observed by Elster and Geitel through 0·1 mm. of aluminium showed that some penetrating rays were also present. This was afterwards confirmed by Allan, who used the electric method. These penetrating rays are probably similar in character to the β rays from the radio-elements.


274. The excited activity produced on the negatively charged wire cannot be due to an action of the strong electric field on the surface of the wire; for very little excited activity is produced if the wire is charged to the same potential inside a closed cylinder.

We have seen that the excited activity produced on the wire can be partially removed by rubbing and by solution in acids, and, in this respect, it is similar to the excited activity produced in bodies by the emanations of radium and thorium. The very close similarity of the excited activity obtained from the atmosphere to that obtained from the radium and thorium emanations suggests the probability that a radio-active emanation exists in the atmosphere. This view is confirmed by a large amount of indirect evidence discussed in sections 276, 277 and 280.

Assuming the presence of a radio-active emanation in the atmosphere, the radio-active effects observed receive a simple explanation. The emanation in the air gradually breaks up, giving rise in some way to positively charged radio-active carriers. These are driven to the negative electrode in the electric field, and there undergo a further change, giving rise to the radiations observed at the surface of the wire. The matter which causes excited activity will thus be analogous to the active deposit of radium and thorium.

Since the earth is negatively electrified with regard to the upper atmosphere, these positive radio-active carriers produced in the air are continuously deposited on the surface of the earth. Everything on the surface of the earth, including the external surface of buildings, the grass, and leaves of trees, must be covered with an invisible deposit of radio-active material. A hill, or mountain peak, or any high mass of rock or land, concentrates the earth's electric field at that point and consequently will receive more excited radio-activity per unit area than the plain. Elster and Geitel have pointed out that the greater ionization of the air observed in the neighbourhood of projecting peaks receives a satisfactory explanation on this view.

If the radio-active carriers are produced at a uniform rate in the atmosphere, the amount of excited activity I_{t}, produced on a wire exposed under given conditions, will, after exposure for a time t, be given by I_{t} = I_{0}(1 - e^{-λt}), where I_{0} is the maximum activity on the wire and λ is the constant of decay of the excited activity. Since the activity of a wire after removal falls to half value in about 45 minutes, the value of λ is 0·92 (hour)^{-1}. Some experiments made by Allan[6] are in rough agreement with the above equation. Accurate comparative results are difficult to obtain on account of the inconstancy of the radio-activity of the open air. After an exposure of a wire for several hours, the activity reached a practical maximum, and was not much increased by continued exposure.

We have seen (section 191) that the carriers of the active deposit of radium and thorium move in an electric field with about the same velocity as the ions. We should expect therefore that a long wire charged to a high negative potential would abstract the active carriers from the atmosphere for a considerable distance. This does not appear to be the case, for Eve (see section 281) has found that the carriers are only abstracted from the air for a radius of less than one metre, for a potential of the wire of -10,000 volts. It seems probable that the carriers of the active matter are deposited on the numerous fine dust particles present in the air and thus move very slowly even in a strong electric field.

The amount of excited activity produced on a wire, supported some distance from the surface of the earth, should increase steadily with the voltage, for the greater the potential, the greater the volume of air from which the radio-active carriers are abstracted.

The presence of radio-active matter in the atmosphere will account for a considerable portion of the ionization of the air observed near the earth. This important question is discussed in more detail in section 281.


275. Radio-activity of freshly fallen rain and snow. C. T. R. Wilson[7] tried experiments to see if any of the radio-active material from the air was carried down by rain. For this purpose a quantity of freshly fallen rain was collected, rapidly evaporated to dryness in a platinum vessel, and the activity of the residue tested by placing the vessel in an electroscope. In all cases, the rate of discharge of the electroscope was considerably increased. From about 50 c.c. of rain water, an amount of activity was obtained sufficient to increase the rate of discharge of the electroscope four or five times, after the rays had traversed a thin layer of aluminium or gold-leaf. The activity disappeared in the course of a few hours, falling to half value in about 30 minutes. Rain water, which had stood for some hours, showed no trace of activity. Tap water, when evaporated, left no active residue.

The amounts of activity obtained from a given quantity of rain water were all of the same order of magnitude, whether the rain was precipitated in fine or in large drops, by night or by day, or whether the rain was tested at the beginning or at the end of a heavy rainfall lasting several hours.

The activity obtained from rain is not destroyed by heating the platinum vessel to a red heat. In this and other respects it resembles the excited activity obtained on negatively charged wires exposed in the open air.

C. T. R. Wilson[8] obtained a radio-active precipitate from rain water by adding a little barium chloride and precipitating the barium with sulphuric acid. An active precipitate was also obtained when alum was added to the water, and the aluminium precipitated by ammonia. The precipitates obtained in this way showed a large activity. The filtrate when boiled down was quite inactive, showing that the active matter had been completely removed by precipitation. This effect is quite analogous to the production of active precipitates from a solution containing the active deposit of thorium (see section 185).

The radio-activity of freshly fallen snow was independently observed by C. T. R. Wilson[9] in England, and Allan[10] and McLennan[11] in Canada. In order to obtain a large amount of activity, the surface layer of snow was removed, and evaporated to dryness in a metal vessel. An active residue was obtained with radio-* active properties similar to those observed for freshly fallen rain. Both Wilson and Allan found that the activity of rain and snow decayed at about the same rate, the activity falling to half value in about 30 minutes. McLennan states that he found a smaller amount of radio-activity in the air after a prolonged fall of snow.

Schmauss[12] has observed that drops of water falling through air ionized by Röntgen rays acquire a negative charge. This effect is ascribed to the fact that the negative ions in air diffuse faster than the positive. On this view the drops of rain and flakes of snow would acquire a negative charge in falling through the air. They would in consequence act as collectors of the positive radio-active carriers from the air. On evaporation of the water the radio-active matter would be left behind.


276. Radio-active emanations from the earth. Elster and Geitel observed that the air in caves and cellars was, in most cases, abnormally radio-active, and showed very strong ionization. This action might possibly be due to an effect of stagnant air, by which it produced a radio-active emanation from itself, or to a diffusion of a radio-active emanation from the soil. To test whether this emanation was produced by the air itself, Elster and Geitel shut up the air for several weeks in a large boiler, but no appreciable increase of the activity or ionization was observed. To see whether the air imprisoned in the capillaries of the soil was radio-active, Elster and Geitel[13] put a pipe into the earth and sucked up the air into a testing vessel by means of a water pump.

The apparatus employed to test the ionization of the air is shown in Fig. 103. C is an electroscope connected with a wire net, Z. The active air was introduced into a large bell-jar of 27 litres capacity, the inside of which was covered with wire netting, MM´. The bell-jar rested on an iron plate AB. The electroscope could be charged by the rod S. The rate of discharge of the electroscope, before the active air was introduced, was noted. On allowing the active air to enter, the rate of discharge increased rapidly, rising in the course of a few hours in one experiment to 30 times the original value. They found that the emanation produced excited activity on the walls of the containing vessel. The air sucked up from the earth was even more active than that observed in caves and cellars. There can thus be little doubt that the abnormal activity observed in caves and cellars is due to a radio-active emanation, present in the earth, which gradually diffuses to the surface and collects in places where the air is not disturbed.

Results similar to those obtained by Elster and Geitel for the air removed from the earth at Wolfenbüttel were also obtained later by Ebert and Ewers[14] at Munich. They found a strongly active emanation in the soil, and, in addition, examined the variation with time of the activity due to the emanation in a sealed vessel. After the introduction of the active air into the testing vessel, the activity was observed to increase for several hours, and then to decay, according to an exponential law, with the time, falling to half value in about 3·2 days. This rate of decay is more rapid than that observed for the radium emanation, which decays to half value in a little less than four days. The increase of activity with time is probably due to the production of excited activity on the walls of the vessel by the emanation. In this respect it is analogous to the increase of activity observed when the radium emanation is introduced into a closed vessel. No definite experiments were made by Ebert and Ewers on the rate of decay of this excited activity. In one experiment the active emanation, after standing in the vessel for 140 hours, was removed by sucking ordinary air of small activity through the apparatus. The activity rapidly fell to about half value, and this was followed by a very slow decrease of the activity with time. This result indicates that about half the rate of discharge observed was due to the radiation from the emanation and the other half to the excited activity produced by it.

The apparatus employed by Ebert and Ewers in these experiments was very similar to that employed by Elster and Geitel, shown in Fig. 103. Ebert and Ewers observed that, when the wire net attached to the electroscope was charged negatively, the rate of discharge observed was always greater than when it was charged positively. The differences observed between the two rates of discharge varied between 10 and 20 per cent. A similar effect has been observed by Sarasin, Tommasina and Micheli[15] for a wire made active by exposure to the open air. This difference in the rates of discharge for positive and negative electricity is probably connected with the presence of particles of dust or small water globules suspended in the gas. The experiments of Miss Brooks (section 181) have shown that the particles of dust present in the air containing the thorium emanation become radio-active. A large proportion of these dust particles acquire a positive charge and are carried to the negative electrode in an electric field. This effect would increase the rate of discharge of the electroscope when charged negatively. In later experiments, Ebert and Ewers noticed that, in some cases, when the air had been kept in the vessel for several days, the effect was reversed, and the electroscope showed a great rate of discharge when charged positively.

Fig. 103.

J. J. Thomson[16] has observed that the magnitude of the ionization current depends on the direction of the electric field, if fine water globules are suspended in the ionized gas. In later experiments, Ebert[17] found that the radio-active emanation could be removed from the air by condensation in liquid air. This property of the emanation was independently discovered by Ebert before he was aware of the results of Rutherford and Soddy on the condensation of the emanations of radium and thorium. To increase the amount of radio-active emanation in a given volume of air, a quantity of the active air, obtained by sucking the air from the soil, was condensed by a liquid air machine. The air was then allowed partially to evaporate, but the process was stopped before the point of volatilization of the emanation was reached. This process was repeated with another quantity of air and the residues added together. Proceeding in this way, he was able to concentrate the emanation in a small volume of air. On allowing the air to evaporate, the ionization of the air in the testing vessel increased rapidly for a time and then slowly diminished. Ebert states that the maximum for the emanation which had been liquefied for some time was reached earlier than for fresh air. The rate of decay of activity of the emanation was not altered by keeping it at the temperature of liquid air for some time. In this respect it behaves like the emanations of radium and thorium.

J. J. Thomson[18] found that air bubbled through Cambridge tap water showed much greater conductivity than ordinary air. The air was drawn through the water by means of a water pump into a large gasometer, when the ionization current was tested with a sensitive electrometer. When a rod charged negatively was introduced into this conducting air it became active. After an exposure for a period of 15 to 30 minutes in the conducting gas, the rod, when introduced into a second testing vessel, increased the saturation current in the vessel to about five times the normal amount. Very little effect was produced when the rod was uncharged or charged positively for the same time. The activity of the rod decayed with the time, falling to half value in about 40 minutes. The amount of activity produced on a wire under constant conditions was independent of the material of the wire. The rays from the rod were readily absorbed in a few centimetres of air.

These effects were, at first, thought to be due to the action of the small water drops suspended in the gas, for it was well known that air rapidly drawn through water causes a temporary increase in its conductivity. Later results, however, showed that there was a radio-active emanation present in Cambridge tap water. This led to an examination of the waters from deep wells in various parts of England, and J. J. Thomson found that, in some cases, a large amount of emanation could be obtained from the well water. The emanation was released either by bubbling air through the water or by boiling the water. The gases obtained by boiling the water were found to be strongly active. A sample of air mixed with the radio-active emanation was condensed. The liquefied gas was allowed to evaporate, and the earlier and later portions of the gas were collected in separate vessels. The final portion was found to be about 30 times as active as the first portion.

An examination of the radio-active properties of the active gases so obtained has been made by Adams[19]. He found that the activity of the emanation decayed, according to an exponential law, with the time, falling to half value in about 3·4 days. This is not very different from the rate of decay of the activity of the radium emanation, which falls to half value in a little less than four days. The excited activity produced by the emanation decayed to half value in about 35 minutes. The decay of the excited activity from radium is at first irregular, but after some time falls off, according to an exponential law, diminishing to half value in 28 minutes. Taking into account the uncertainty attaching to measurements of the very small ionization observed in these experiments, the results indicate that the emanation obtained from well water in England is similar to, if not identical with, the radium emanation. Adams observed that the emanation was slightly soluble in water. After well water had been boiled for a while and then put aside, it was found to recover its power of giving off an emanation. The amount obtained after standing for some time was never more than 10 per cent. of the amount first obtained. Thus it is probable that the well water, in addition to the emanations mixed with it, has also a slight amount of a permanent radio-active substance dissolved in it. Ordinary rain water or distilled water does not give off an emanation. Bumstead and Wheeler[20] have made a very careful examination of the radio-activity of the emanation obtained from the surface water and soil at New Haven, Connecticut. The emanation, obtained from the water by boiling, was passed into a large testing cylinder, and measurements of the current were made by means of a sensitive electrometer. The current gradually rose to a maximum, after the introduction of the emanation, in exactly the same way as the current increases in a vessel after the introduction of the radium emanation. The decay of activity of the emanations obtained from the water and soil was carefully measured, and, within the limits of experimental error, agreed with the rate of decay of activity observed for the radium emanation. The identity of the emanations from the water and soil with the radium emanation was still further established by experiments on the rate of diffusion of the emanation through a porous plate. By comparative tests it was found that the coefficient of diffusion of the emanations from the water and soil was the same as for the radium emanation. Also, by comparison of the rate of diffusion of carbonic acid, it was found that the density of the emanation was about four times that of carbonic acid, a result in good agreement with that found for the radium emanation (sections 161 and 162).

Bumstead[21] has found that a considerable amount of thorium as well as radium emanation exists in the air of New Haven. For a three hour exposure in the open air, 3 to 5 per cent. of the excited activity on the wire is due to thorium. For a twelve hour exposure, the thorium activity was sometimes 15 per cent. of the whole. On account of the comparatively slow decay of the excited activity of thorium, the activity on the wire after removal for three or four hours was due almost entirely to thorium. The rate of decay could then be measured accurately, and was found to be the same as for a wire exposed in the presence of the thorium emanation.

Dadourian[22] has made an examination of the underground air in New Haven, and has found that this too contains a large quantity of the thorium emanation. A circular hole about 50 cms. in diameter and 2 metres deep was dug in the ground. A number of wires were wound on an insulated frame and suspended in the hole, the top of the hole then being covered over. The wire was charged negatively by a Wimshurst machine. After a long exposure the excited activity on the wire diminished at a rate that showed it to be a mixture of the excited activities of thorium and radium.

A very large amount of work has been done in examining various hot and mineral springs for the presence of the radium emanation, and it is not possible here to refer more than briefly to a few of the very numerous papers that have been published on this subject both in Europe and America. H. S. Allen and Lord Blythswood[23] have observed that the hot springs at Bath and Buxton gave off a radio-active emanation. This was confirmed by Strutt[24], who found that the escaping gases contained the radium emanation, and also that the mud deposited from the springs contained a trace of radium salts. These results are of considerable interest, for Lord Rayleigh has observed that helium is contained among the gases evolved by the springs. It appears probable that the helium observed is produced from the radium or radio-active deposits through which the water flows. Many mineral and hot springs which are famous for their curative properties have been found to contain traces of radium and also considerable amounts of radium emanation. It has been suggested that the curative properties may be due to some extent to the presence of these minute quantities of radium.

Himstedt[25] found that the thermal springs at Baden Baden contained the radium emanation, while Elster and Geitel[26] examined the deposits formed by these springs and found them to contain small quantities of radium salts. Results of a similar character were obtained for a number of waters in Germany by Dorn[27], Schenck[28], and H. Mache[29]. Curie and Laborde[30] have tested the waters of a large number of mineral springs and found that the great majority contain the radium emanation. In this connection, it is of interest to note that Curie and Laborde found very little emanation in the waters of Salins-Moutiers, while Blanc[31] observed, on the other hand, that the sediment from the spring was very active. A closer examination of this deposit by Blanc revealed the fact that it contained a considerable quantity of thorium. This was proved by finding that it gave out an emanation, which lost half of its activity in one minute, and produced excited activity, which fell to half value in about 11 hours. Boltwood[32] has tested a number of samples of spring water from different sources in America and has found that many of them contain the radium emanation.

Most of the results upon the amount of radium emanation from different sources have been expressed in arbitrary units without, in many cases, any comparative standard being given. Boltwood (loc. cit.) has described a satisfactory method for collecting and testing the emanation from different waters, and has suggested that the rate of discharge observed by the electroscope or the electrometer should be expressed in terms of the effect due to the emanation liberated on solution of a definite weight of the mineral uraninite. Since in every mineral so far examined, the amount of radium present is proportional to the amount of uranium, such a standard would be sufficiently definite for practical purposes. The emanation liberated from a few centigrams of the mineral is sufficient to give a convenient rate of discharge of an electroscope. Such a method is preferable to using a known quantity of a radium compound as a standard, since it is difficult to know with certainty the activity of the preparations of radium which may be in the possession of the different experimenters.


277. Radio-activity of constituents of the earth. Elster and Geitel[33] observed that, although in many cases the conductivity of the air was abnormally high in underground enclosures, the conductivity varied greatly in different places. In the Baumann Cave, for example, the conductivity of the air was nine times the normal, but in the Iberg Cave only three times the normal. In a cellar at Clausthal the conductivity was only slightly greater than the normal, but the excited radio-activity obtained on a negatively charged wire exposed in it was only 1/11 of the excited radio-activity obtained when the wire was exposed in the free air. They concluded from these experiments that the amount of radio-activity in the different places probably varied with the nature of the soil. Observations were then made on the conductivity of the air sucked up from the earth at different parts of the country. The clayey and limestone soils at Wolfenbüttel were found to be strongly active, the conductivity varying from four to sixteen times the normal amount. A sample of air from the shell limestone of Würzburg and from the basalt of Wilhelmshöhe showed very little activity.

Experiments were made to see whether any radio-active substance could be detected in the soil itself. For this purpose some earth was placed on a dish and introduced under a bell-jar, similar to that shown in Fig. 103. The conductivity of the air in the bell-jar increased with the time, rising to three times the normal value after several days. Little difference was observed whether the earth was dry or moist. The activity of the soil seemed to be permanent, for no change in the activity was observed after the earth had been laid aside for eight months.

Attempts were then made to separate the radio-active constituent from the soil by chemical treatment. For this purpose a sample of clay was tested. By extraction with hydrochloric acid all the calcium carbonate was removed. On drying the clay the activity was found to be reduced, but it spontaneously regained its original activity in the course of a few days. It seems probable, therefore, that an active product had been separated from the soil by the acid. Elster and Geitel consider that an active substance was present in the clay, which formed a product more readily soluble in hydrochloric acid than the active material itself. There seemed to be a process of separation analogous to that of Th X from thorium by precipitation with ammonia.

Experiments were also made to see whether substances placed in the earth acquired any radio-activity. For this purpose samples of potter's clay, whitening, and heavy spar, wrapped in linen, were placed in the earth 50 cms. below the surface. After an interval of a month, these were dug up and their activity examined. The clay was the only substance which showed any activity. The activity of the clay diminished with the time, showing that activity had been excited in it by the emanations present in the soil.

Elster and Geitel[34] have found that a large quantity of the radio-active emanation can be obtained by sucking air through clay. In some cases, the conductivity of the air in the testing vessel was increased over 100 times. They have also found that the so-called "fango"—a fine mud obtained from hot springs in Battaglia, Northern Italy—gives off three or four times as much emanation as clay. By treating the fango with acid, the active substance present was dissolved. On adding some barium chloride to the solution, and precipitating the barium as sulphate, the active substance was removed, and in this way a precipitate was obtained over 100 times as active, weight for weight, as the original fango. Comparisons were made of the rate of decay of the excited activity, due to the emanation from fango, with that due to the radium emanation, and within the limits of error, the decay curves obtained were found to be identical. There can thus be no doubt that the activity observed in fango is due to the presence of a small quantity of radium. Elster and Geitel calculate that the amount of radium, contained in it, is only about one-thousandth of the amount to be obtained from an equal weight of pitchblende from Joachimsthal.

Vincenti and Levi Da Zara[35] have found that the waters and sediments of a number of hot springs in Northern Italy contain the radium emanation. Elster and Geitel observed that natural carbonic acid obtained from great depths of old volcanic soil was radio-active, while Burton[36] found that the petroleum from a deep well in Ontario, Canada, contained a large quantity of emanation, probably of radium, since its activity fell to half value in 3·1 days, while the excited activity produced by the emanation fell to half value in about 35 minutes. A permanently active deposit was left behind after volatilization of the oil, indicating that probably one or more of the radio-elements were present in minute quantity.

Elster and Geitel[37] have found that the active sediments obtained from springs at Nauheim and Baden Baden showed abnormal ratesA of decay of the excited activity. This was finally traced to the presence in the deposit of both thorium and radium. By suitable chemical methods, the two active substances were separated from each other and were then tested separately.


278. Effect of meteorological conditions upon the radio-activity of the atmosphere. The original experiments of Elster and Geitel on the excited radio-activity derived from the atmosphere were repeated by Rutherford and Allan[38] in Canada. It was found that a large amount of excited radio-activity could be derived from the air, and that the effects were similar to those observed by Elster and Geitel in Germany. This was the case even on the coldest day in winter, when the ground was covered deeply with snow and wind was blowing from the north over snow-covered lands. The results showed that the radio-activity present in the air was not much affected by the presence of moisture, for the air during a Canadian winter is extremely dry. The greatest amount of excited activity on a negatively charged wire was obtained in a strong wind. In some cases the amount produced for a given time of exposure was ten to twenty times the normal amount. A cold bright day of winter usually gave more effect than a warm dull day in summer.

Elster and Geitel[39] have made a detailed examination of the effect of meteorological conditions on the amount of excited radio-activity to be derived from the atmosphere. For this purpose a simple portable apparatus was devised by them and used for the whole series of experiments. A large number of observations were taken, extending over a period of twelve months. They found that the amount of excited activity obtained was subject to great variations. The extreme values obtained varied in the ratio of 16 to 1. No direct connection could be traced between the amount of ionization in the atmosphere and the amount of excited activity produced. They found that the greatest amount of excited activity was obtained during a fog, when the amount of ionization in the air was small. This result, however, is not necessarily contradictory to the view that the ionization and activity of the air are to a certain extent connected. From the experiments of Miss Brooks on the effect of dust in acting as carriers of excited activity, more excited activity should be obtained during a fog than in clear air. The particles of water become centres for the deposit of radio-active matter. The positive carriers are thus anchored and are not removed from the air by the earth's field. In a strong electric field, these small drops will be carried to the negative electrode and manifest their activity on the surface of the wire. On the other hand, the distribution of water globules throughout the air causes the ions in the air to disappear rapidly in consequence of their diffusion to the surface of the drops (see section 31). For this reason the denser the fog, the smaller will be the conductivity observed in the air.

Lowering the temperature of the air had a decided influence. The average activity observed below 0° C. was 1·44 times the activity observed above 0° C. The height of the barometer was found to exert a marked influence on the amount of excited activity to be derived from the air. The lower the barometer the greater was the amount of excited activity in the air. The effect of variation of the height of the barometer is intelligible, when it is considered that probably a large proportion of the radio-activity observed in the air is due to the radio-active emanations which are continuously diffusing from the earth into the atmosphere. Elster and Geitel have suggested that a lowering of the pressure of the air would cause the air from the ground to be drawn up from the capillaries of the earth into the atmosphere. This, however, need not necessarily be the case if the conditions of the escape of the emanation into the atmosphere are altered by the variation of the position of underground water or by a heavy fall of rain.

The amount of excited activity to be derived from the air on the Baltic Coast was only one-third of that observed inland at Wolfenbüttel. Experiments on the radio-activity of the air in mid-ocean would be of great importance in order to settle whether the radio-activity observed in the air is due to the emanations from the soil alone. It is probable that the radio-activity of the air at different points of the earth may vary widely, and may largely depend on the nature of the soil.

Saake[40] has found that the amount of emanation present in the air at high altitudes in the valley of Arosa in Switzerland is much greater than the normal amount at lower levels. Elster and Geitel have observed that there is also a larger number of ions in the air at high altitudes, and suggest that the curative effect of thermal springs and the physiological actions of the air at high levels may be connected with the presence of an unusual amount of radio-active matter in the atmosphere. Simpson[41] made experiments on the amount of excited activity at Karasjoh, Norway, at a height of about 150 feet above sea level. The sun did not rise above the level of the horizon during the time the observations were taken. The average amount of excited activity obtained from the air was considerably greater than the normal amount observed by Elster and Geitel in Germany. This was the more surprising as the ground was frozen hard and covered with deep snow. Allan, working in Montreal, Canada, early observed that the amount of activity to be obtained from the air was about the same in summer as in winter, although, in the latter case, the whole earth was deeply frozen and covered with snow, and the winds blew from the north over snow-covered lands. Under such conditions, a diminution of the amount of activity is to be expected since the diffusion of the emanation must be retarded, if not altogether stopped, by the freezing of the soil. On the other hand, it appears difficult to escape from the conclusion of Elster and Geitel that the emanation present in the atmosphere is evolved from the earth itself.

Some interesting experiments have been made by McLennan[42] on the amount of excited radio-activity to be derived from the air when filled with fine spray. The experiments were made at the foot of the American Fall at Niagara. An insulated wire was suspended near the foot of the Fall, and the amount of excited activity on the wire compared with the amount to be obtained on the same wire for the same exposure in Toronto. The amount of activity obtained from the air at Toronto was generally five or six times that obtained from the air at the Falls. In these experiments it was not necessary to use an electric machine to charge the wire negatively, for the falling spray kept the insulated wire permanently charged to a potential of about -7500 volts. These results indicate that the falling spray had a negative charge and electrified the wire. The small amount of the excited radio-activity at the Falls was probably due to the fact that the negatively charged drops abstracted the positively charged radio-active carriers from the atmosphere, and in falling carried them to the river below. On collecting the spray and evaporating it, no active residue was obtained. Such a result is, however, to be expected on account of the minute proportion of the spray tested compared with that present in the air.


279. A very penetrating radiation from the earth's surface. McLennan[43], and Rutherford and Cooke[44] independently, observed the presence of a very penetrating radiation inside buildings. McLennan measured the natural conductivity of the air in a large closed metal cylinder by means of a sensitive electrometer. The cylinder was then placed inside another and the space between filled with water. For a thickness of water between the cylinders of 25 cms. the conductivity of the air in the inner cylinder fell to about 63 per cent. of its initial value. This result shows that part of the ionization in the inner cylinder was due to a penetrating radiation from an external source, which radiation was partially or wholly absorbed in water.

Rutherford and Cooke observed that the rate of discharge of a sealed brass electroscope was diminished by placing a lead screen around the electroscope. A detailed investigation of the decrease of the rate of discharge in the electroscope, when surrounded by metal screens, was made later by Cooke[45]. A thickness of 5 cms. of lead round the electroscope decreased the rate of discharge about 30 per cent. Further increase of the thickness of the screen had no effect. When the apparatus was surrounded by 5 tons of pig-lead the rate of discharge was about the same as when it was surrounded by a plate about 3 cms. thick. An iron screen also diminished the rate of discharge to about the same extent as the lead. By suitably arranging lead screens it was found that the radiation came equally from all directions. It was of the same intensity by night as by day. In order to be sure that this penetrating radiation did not arise from the presence of radio-active substances in the laboratory, the experiments were repeated in buildings in which radio-active substances had never been introduced, and also on the open ground far removed from any building. In all cases a diminution of the rate of discharge of the electroscope, when surrounded by lead screens, was observed. These results show that a penetrating radiation is present at the surface of the earth, arising partly from the earth itself and partly from the atmosphere.

The result is not surprising when the radio-activity of the earth and atmosphere is taken into account. The writer has found that bodies made active by exposure to the emanations from thorium and radium give out γ rays. We may expect then that the very similar excited radio-activity which is present in the earth and atmosphere should also give rise to γ rays of a similar character. More recent work, however (section 286), indicates that this explanation is not sufficient to explain all the facts observed.


280. Comparison of the radio-activity of the atmosphere with that produced by the radio-elements. The radio-active phenomena observed in the earth and atmosphere are very similar in character to those produced by thorium and radium. Radio-active emanations are present in the air of caves and cellars, in natural carbonic acid, and in deep well water, and these emanations produce excited radio-activity on all bodies in contact with them. The question now arises whether these effects are due entirely to known radio-elements present in the earth or to unknown kinds of radio-active matter. The simplest method of testing this point is to compare the rate of decay of the radio-

  • active product in the atmosphere with those of the known radio-active

products of thorium and radium. A cursory examination of the facts at once shows that the radio-activity of the atmosphere is much more closely allied to effects produced by radium than to those due to thorium. The activity of the emanation released from well water, and also that sucked up from the earth, decays to half value in about 3·3 days, while the activity of the radium emanation decays to half value in an interval of 3·7 to 4 days. Considering the difficulty of making accurate determinations of these quantities, the rates of decay of the activity of the emanations from the earth and from radium agree within the limits of experimental error. A large number of observers have found that the radium emanation is present in the water of thermal springs and in the sediment deposited by them. Bumstead and Wheeler have shown that the emanation from the soil and surface water of New Haven is identical with that from radium. If the emanations from the earth and from radium are the same, the excited activities produced should have the same rate of decay. The emanation from well water in England approximately fulfils this condition (section 276), but an observation recorded by Ebert and Ewers (section 276) seems to show that the excited activity due to the emanation sucked up from the earth decays at a very slow rate compared with that due to radium.

Bumstead has given undoubted evidence that the thorium as well as the radium emanation is also present in the atmosphere at New Haven, while Dadourian has shown that it is emitted by New Haven soil. Blanc, and Elster and Geitel, have also found that thorium is present in the sediment from some thermal springs.

If the active matter in the atmosphere consists mainly of the radium emanation, the active deposit on a negatively charged wire, exposed in the open air, should initially consist of radium A, B and C. The curve of decay should be identical with the decay curve of the excited activity of radium, measured by the α rays, that is, there should be a rapid initial drop corresponding to the initial 3 minute change, then a slow rate of variation, the activity after several hours decaying to half value in about 28 minutes (see section 222). The rapid initial drop has been observed by Bumstead for the air at New Haven. Allan[46] did not observe this initial drop in Montreal, but found the activity fell to half value in about 45 minutes, reckoning from a time about 10 minutes after the removal of the active wire. This is about the rate of decay to be expected for the active deposit of radium over the same interval. Allan obtained evidence that there were several kinds of active matter deposited on the wire. For example, the activity transferred from the active wire to a piece of leather, moistened with ammonia, fell to half value in 38 minutes; for a piece of absorbent felt treated similarly, the activity fell to half value in 60 minutes, the normal time for the untreated wire being 45 minutes.

It is probable that this variation of the rate of decay is due to the fact that unequal proportions of radium B and C were transferred from the wire to the rubber. If a greater proportion of B than of C were removed, the decay would be slower and vice versa.

The fact that the activity of rain and snow falls to half value in about 30 minutes is a strong indication that the radium emanation is present in the atmosphere. The active matter with the rain and snow after standing some time would consist mainly of radium C and this should decay exponentially with the time, falling to half value in 28 minutes.

On account of the rapid decay of the thorium emanation—half value in one minute—it is not likely that much of the activity of the atmosphere can be ascribed to it. Its effect would be most marked near the surface of the soil.

There can be little doubt, that a large part of the radio-activity of the atmosphere is due to the radium emanation, which is continually diffusing into the atmosphere from the pores of the earth. Since radio-activity has been observed in the atmosphere at all points at which observations have, so far, been made, radio-active matter must be distributed in minute quantities throughout the soil of the earth. The volatile emanations escape into the atmosphere by diffusion, or are carried to the surface in spring water or by the escape of underground gases, and cause the radio-active phenomena observed in the atmosphere. The observation of Elster and Geitel that the radio-activity of the air is much less near the sea than inland is explained at once, if the radio-activity of the atmosphere is due mainly to the diffusion of emanations from the soil into the air above it.

The rare gases helium and xenon which exist in the atmosphere have been tested and found to be non-radio-active. The radio-activity of the air cannot be ascribed to a slight radio-activity possessed by either of these gases.


281. Amount of the radium emanation in the atmosphere. It is a matter of great interest to form an estimate of the amount of radium emanation present in the atmosphere, for since it comes from the earth, it indirectly serves as a means of estimating the amount of radium which is distributed over a thin crust of the earth.

Some experiments in this direction have been made by Eve in the laboratory of the writer. The experiments are not yet completed but the results so far obtained allow us to calculate the probable amount of emanation per cubic kilometre of the atmosphere near the earth.

Experiments were first made with a large iron tank 154 cms. square and 730 cms. deep, in a building in which no radium or other radio-active material had ever been introduced. The saturation ionization current for the air in the tank was first measured by means of an electroscope, connected with an insulated electrode passing up the centre of the closed tank. Assuming that the ionization in the tank was uniform, the number of ions produced per c.c. of the air in the tank was found to be 10. This is a considerably lower value than has usually been observed in a small closed vessel (see section 284). Cooke obtained the value 10 for a well cleaned brass electroscope, surrounded by lead, while Schuster obtained a value about 12 for the air in the laboratory of Owens College, Manchester.

In order to measure the amount of the excited activity from the tank, a central insulated wire was charged negatively to about 10,000 volts by a Wimshurst machine. After two hours, the wire was removed and wound on an insulated frame connected with a gold-leaf electroscope. The rate of decay of the activity on the wire was found to be about the same as for the excited activity produced by the radium emanation. In order to estimate the amount of radium emanation present in the large tank, special experiments were made with a smaller tank in which a known quantity of the radium emanation was introduced by employing a solution of pure radium bromide of known concentration. A central wire was made the negative electrode as before, and, after removal, it was wound on the frame and its activity tested. In this way it was found that the amount of radium emanation present in the large tank, in order to produce the excited activity observed, must have been equal to the equilibrium or maximum amount to be obtained from 9·5 × 10^{-9} grams of pure radium bromide. The volume of the large tank was 17 cubic metres, so that the amount of emanation present per cubic metre was equivalent to that liberated from 5·6 × 10^{-10} grams of radium bromide in radio-active equilibrium.

If the amount of the emanation in the tank is taken as the average amount existing in the outside air, the amount of radium emanation present per cubic kilometre of the air is equivalent to that supplied by 0·56 grams of radium bromide.

For the purpose of calculation, suppose the emanation is uniformly distributed over the land portion of the earth (1/4 of the total surface), and to extend to an average height of 5 kilometres. The air over the sea is not taken into account as its radio-activity has not been examined. The total amount of emanation present in the atmosphere under these conditions corresponds to that supplied by about 400 tons of radium bromide. In order to maintain this amount of emanation in the atmosphere, it must be supplied at a constant rate from the earth's surface. Since the greater amount of the emanation probably escapes into the air by transpiration and diffusion through the soil, the emanation cannot reach the surface except from a very thin layer of the earth. The probable thickness of this layer can be estimated if it is assumed that the present loss of heat from the earth is supplied from the radio-active matter contained in it. We have seen (section 271) that, on this hypothesis, there must be an amount of active matter in the earth corresponding to about 300 million tons of radium. If this is supposed to be uniformly distributed, a thickness of layer of about 13 metres will suffice to maintain the calculated amount of emanation in the atmosphere. This thickness of layer is about the order of magnitude to be expected from general considerations. These results lead indirectly to the conclusion that a large amount of emanation does undoubtedly exist in the surface crust of the earth.

Experiments were also made by Eve with a large zinc cylinder exposed in the open air. Volume for volume, the average amount of excited activity derived from it was only about one-third of that obtained from the large iron tank. This would reduce the amount of emanation, previously deduced, to about one-third.

Before such calculations can be considered at all definite, it will be necessary to make comparative measurements of the amount of emanation in the atmosphere at various parts of the earth. The air at Montreal is not abnormally active, so that the calculations probably give the right order of magnitude of the quantities.

Eve also observed that the amount of activity to be obtained per unit length of the wire in the zinc cylinder of about 70 cms. in diameter was about the same as for a wire ·5 mms. in diameter charged to 10,000 volts in the open air, supported 20 feet from the ground. This shows that such a potential does not draw in the carriers of excited activity which are more than half a metre away, and probably the range is even less.

It is of great importance to find how large a proportion of the number of ions produced in the atmosphere is due to the radio-active matter distributed throughout it. The results of Eve with the large iron tank, already referred to, indicate that a large proportion of the ionization in the tank was due to the radio-active matter contained in it, for the ratio of the excited activity on the central electrode to the total ionization current in the tank was about 7/10 of the corresponding ratio for a smaller tank into which a supply of the radium emanation had been introduced.

This result requires confirmation by experiments at other parts of the earth, but the results point to the conclusion that a large part, if not all, of the ionization at the earth's surface is due to radio-active matter distributed in the atmosphere. A constant rate of production of 30 ions per second per c.c. of air, which has been observed in the open air at the surface of the earth in various localities, would be produced by the presence in each c.c. of the air of the amount of emanation liberated from 2·4 × 10^{-15} grams of radium bromide in radio-active equilibrium. It is not likely, however, that the ionization of the upper part of the atmosphere is due to this cause alone. In order to explain the maintenance of the large positive charge, which generally exists in the upper atmosphere, there must be a strong ionization of the upper air, which may possibly be due to ionizing radiations emitted by the sun.

282. Ionization of atmospheric air. A large number of measurements have been made during the last few years to determine the relative amount of ionization in the atmosphere in different localities and at different altitudes. Measurements of this character were first undertaken by Elster and Geitel with a special type of electroscope. A charged body exposed to the air was attached to a portable electroscope, and the rate of loss of charge was observed by the movement of the gold or aluminium leaf. The rates of discharge of the electroscope for positive and negative electricity were generally different, the ratio depending on the locality and the altitude, and on the meteorological conditions. This apparatus is not suitable for quantitative measurements and the deductions to be drawn from the observations are of necessity somewhat indefinite.

Ebert[47] has designed a portable apparatus in which the number of ions per c.c. of the air can be determined easily. A constant current of air is drawn between two concentric cylinders by means of a fan actuated by a falling weight. The inner cylinder is insulated and connected with an electroscope. Knowing the capacity of the apparatus, and the velocity of the current of air, the rate of movement of the gold-leaf affords a measure of the number of ions present in unit volume of the air drawn between the cylinders.

In this way Ebert found that the number of ions in the air was somewhat variable, but on an average corresponded to about 2600 per c.c. in the particular locality where the measurements were made.

This is the equilibrium number of ions present per c.c. when the rate of production balances the rate of recombination. If q is the number of ions produced per second per unit volume of the air and n is the equilibrium number, then q = αn^2 where α is the constant of recombination (section 30).

By a slight addition to the apparatus of Ebert, Schuster[48] has shown that the constant of recombination for the particular sample of air under investigation can be determined. The value so obtained for air in the neighbourhood of Manchester was variable, and two or three times as great as for dust-free air. The results of some preliminary measurements showed that the number of ions present per c.c. of the air in different localities varied from 2370 to 3660, while the value of q, the number of ions produced per c.c. per second, varied between 12 and 38·5.

Rutherford and Allan and Eberts showed that the ions in the air had about the same mobility as the ions produced in air by Röntgen rays and radio-active substances. In some recent determinations by Mache and Von Schweidler[49], the velocity of the positive ion was found to be about 1·02 cms. per second, and that of the negative 1·25 cms., for a potential gradient of one volt per cm.

Langevin[50] has recently shown that in addition to these swift moving ions, there are also present in the atmosphere some ions which travel extremely slowly in an electric field. The number of these slowly moving ions in the air in Paris is about 40 times as great as the number of the swifter ions. This result is of great importance, for in the apparatus of Ebert these ions escape detection, since the electric field is not strong enough to carry them to the electrodes during the time of their passage between the cylinders.


283. Radio-activity of ordinary materials. It has been shown that radio-active matter seems to be distributed fairly uniformly over the surface of the earth and in the atmosphere. The very important question arises whether the small radio-activity observed is due to known or unknown radio-elements present in the earth and atmosphere, or to a feeble radio-activity of matter in general, which is only readily detectable when large quantities of matter are present. The experimental evidence is not yet sufficient to answer this question, but undoubted proof has been obtained that many of the metals show a very feeble radio-activity. Whether this radio-activity is due to the presence of a slight trace of the radio-elements or is an actual property of the metals themselves will be discussed in more detail in section 286.

Schuster[51] has pointed out that every physical property hitherto discovered for one element has been found to be shared by all the others in varying degrees. For example, the property of magnetism is most strongly marked in iron, nickel, and cobalt, but all other substances are found to be either feebly magnetic or diamagnetic. It might thus be expected on general principles that all matter should exhibit the property of radio-activity in varying degrees. On the view developed in chapter X., the presence of this property is an indication that the matter is undergoing change accompanied by the expulsion of charged particles. It does not, however, by any means follow that because the atom of one element in the course of time becomes unstable and breaks up, that, therefore, the atoms of all the other elements pass through similar phases of instability.

It has already been mentioned (section 8), that Mme Curie made a very extensive examination of most of the elements and their compounds for radio-activity. The electric method was used, and any substance possessing an activity of 1/100 of that of uranium would certainly have been detected. With the exception of the known radio-elements and the minerals containing uranium and thorium, no other substances were found to be radio-active even to that degree.

Certain substances like phosphorus[52] possess the property of ionizing a gas under special conditions. The air which is drawn over the phosphorus is conducting, but it has not yet been settled whether this conductivity is due merely to ions formed at the surface of the phosphorus or to ions produced by the phosphorus nuclei or emanations, as they have been termed, which are carried along with the current of air. It does not however appear that the ionization of the gas is in any way due to the presence of a penetrating type of radiation such as is emitted by the radio-*

  • active bodies. Le Bon (section 8) observed that quinine sulphate,

after being heated to a temperature below the melting point and then allowed to cool, showed for a time strong phosphorescence and was able rapidly to discharge an electroscope. The discharging action of quinine sulphate under varying conditions has been very carefully examined by Miss Gates[53]. The ionization could not be observed through thin aluminium foil or gold-leaf, but appeared to be confined to the surface of the sulphate. The current observed by an electrometer was found to vary with the direction of the electric field, indicating that the positive and negative ions had very different mobilities. The discharging action appears to be due either to an ionization of the gas very close to the surface by some short ultra-violet light waves, accompanying the phosphorescence, or to a chemical action taking place at the surface.

Thus, neither phosphorus nor quinine sulphate can be considered to be radio-active, even under the special conditions when they are able to discharge an electrified body. No evidence in either case has been found that the ionization is due to the emission of a penetrating radiation.

No certain evidence has yet been obtained that any body can be made radio-active by exposure to Röntgen rays or cathode rays. A metal exposed to the action of Röntgen rays gives rise to a secondary radiation which is very readily absorbed in a few centimetres of air. It is possible that this secondary radiation may prove to be analogous in some respects to the α rays from the radio-elements. The secondary radiation, however, ceases immediately the Röntgen rays are cut off. Villard[54] stated that a piece of bismuth produced a feeble photographic action after it had been exposed for some time to the action of the cathode rays in a vacuum. It has not however been shown that the bismuth gives out rays of a character similar to those of the radio-active bodies. The experiments of Ramsay and Cooke on the production of apparent activity in inactive matter by the radiations from radium have already been discussed in section 264.

The existence of a very feeble radio-activity of ordinary matter has been deduced from the study of the conductivity of gases in closed vessels. The conductivity is extremely minute, and special methods are required to determine it with accuracy. A brief account will now be given of the gradual growth of our knowledge on this important question.


284. Conductivity of air in closed vessels. Since the time of Coulomb onwards several investigators have believed that a charged conductor placed inside a closed vessel lost its charge more rapidly than could be explained by the conduction leak across the insulating support. Matteucci, as early as 1850, observed that the rate of loss of charge was independent of the potential. Boys, by using quartz insulators of different lengths and diameters, arrived at the conclusion that the leakage must in part take place through the air. This loss of charge in a closed vessel was believed to be due in some way to the presence of dust particles in the air.

On the discovery that gases become temporary conductors of electricity under the influence of Röntgen rays and the rays from radio-active substances, attention was again drawn to this question. Geitel[55] and C. T. R. Wilson[56] independently attacked the problem, and both came to the conclusion that the loss of charge was due to a constant ionization of the air in the closed vessel. Geitel employed in his experiments an apparatus similar to that shown in Fig. 103. The loss of charge of an Exner electroscope, with the cylinder of wire netting Z attached, was observed in a closed vessel containing about 30 litres of air. The electroscope system was found to diminish in potential at the rate of about 40 volts per hour, and this leakage was shown not to be due to a want of insulation of the supports.

Wilson, on the other hand, used a vessel of very small volume, in order to work with air which could be completely freed from dust. In the first experiments a silvered glass vessel with a volume of only 163 c.c. was employed. The experimental arrangement is shown in Fig. 104.

The conductor, of which the loss of charge was to be measured, was placed near the centre of the vessel A. It consisted of a narrow strip of metal with a gold-leaf attached. The strip of metal was fixed to the upper rod by means of a small sulphur bead. The upper rod was connected with a sulphur condenser with an Exner electroscope B attached to indicate its potential. The gold-leaf system was initially charged to the same potential as the upper rod and condenser by means of a fine steel wire which was caused to touch the gold-leaf system by the attraction of a magnet brought near it. The rate of movement of the gold-leaf was measured by means of a microscope provided with a micrometer eye-piece. By keeping the upper rod at a slightly higher potential than the gold-leaf system, it was ensured that the loss of charge of the gold-leaf system should not be due in any way to a conduction leakage across the sulphur bead.

Fig. 104.

The method employed by Wilson in these experiments is very certain and convenient when an extremely small rate of discharge is to be observed. In this respect the electroscope measures with certainty a rate of loss of charge much smaller than can be measured by a sensitive electrometer. Both Geitel and Wilson found that the leakage of the insulated system in dust-free air was the same for a positive as for a negative charge, and was independent of the potential over a considerable range. The leakage was the same in the dark as in diffuse daylight. The independence of leakage of the potential is strong evidence that the loss of charge is due to a constant ionization of the air. When the electric field acting on the gas exceeds a certain value, all the ions are carried to the electrodes before recombination occurs. A saturation current is reached, and it will be independent of further increase of the electric field, provided, of course, a potential sufficiently high to cause a spark to pass is not applied.

C. T. R. Wilson has recently devised a striking experiment to show the presence of ions in dust-free air which is not exposed to any external ionizing agency. Two large metal plates are placed in a glass vessel connected with an expansion apparatus similar to that described in section 34. On expanding the air, the presence of the ions is shown by the appearance of a slight cloud between the plates. These condensation nuclei carry an electric charge, and are apparently similar in all respects to the ions produced in gases by X rays, or by the rays from active substances.

Wilson found that the loss of charge of the insulated system was independent of the locality. The rate of discharge was unaltered when the apparatus was placed in a deep tunnel, so that it did not appear that the loss of charge was due to an external radiation. From experiments already described, however (section 279), it is probable that about 30 per cent. of the rate of discharge observed was due to a very penetrating radiation. This experiment of Wilson's indicates that the intensity of the penetrating radiation was the same in the tunnel as at the earth's surface. Wilson found that the ionization of the air was about the same in a brass vessel as in one of glass, and came to the conclusion that the air was spontaneously ionized.

Using a brass vessel of volume about 471 c.c., Wilson determined the number of ions that must be produced in air per unit volume per second, in order to account for the loss of charge of the insulated system. The leakage system was found to have a capacity of about 1·1 electrostatic units, and lost its charge at the rate of 4·1 volts per hour for a potential of 210 volts, and 4·0 volts per hour for a potential of 120 volts. Taking the charge on an ion as 3·4 × 10^{-10} electrostatic units, this corresponds to a production of 26 ions per second.

Rutherford and Allan[57] repeated the results of Geitel and Wilson, using an electrometer method. The saturation current was observed between two concentric zinc cylinders of diameter 25·5 and 7·5 cms. respectively and length 154 cms. It was found that the saturation current could practically be obtained with a potential of a few volts. Saturation was however obtained with a lower voltage after the air had remained undisturbed in the cylinders for several days. This was probably due to the gradual settling of the dust originally present in the air.

Later observations of the number of ions produced in air in sealed vessels have been made by Patterson[58], Harms[59], and Cooke[60]. The results obtained by different observers are shown in the following table. The value of the charge on an ion is taken as 3·4 × 10^{-10} electrostatic units:

+—————————+————————-+——————————+
| | Number of ions | |
|Material of vessel|produced per c.c.| Observer |
| | per second | |
+—————————+————————-+——————————+
|Silvered glass | 36 | C. T. R. Wilson |
|Brass | 26 | " " |
|Zinc | 27 |Rutherford and Allan|
|Glass | 53 to 63 | Harms |
|Iron | 61 | Patterson |
|Cleaned brass | 10 | Cooke |
+—————————+————————-+——————————+

It will be shown later that the differences in these results are probably due to differences in the radio-activity of the containing vessel.


285. Effect of pressure and nature of gas. C. T. R. Wilson (loc. cit.) found that the rate of leakage of a charged conductor varied approximately as the pressure of the air between the pressures examined, viz. 43 mms. and 743 mms. of mercury. These results point to the conclusion that, in a good vacuum, a charged body would lose its charge extremely slowly. This is in agreement with an observation of Crookes, who found that a pair of gold-leaves retained their charge for several months in a high vacuum.

Wilson[61] at a later date investigated the leakage for different gases. The results are included in the following table, where the ionization produced in air is taken as unity:

+———————-+—————+———————————————-+
| Gas | Relative |(Relative ionization)/(density)|
| |ionization| |
+———————-+—————+———————————————-+
|Air | 1·00 | 1·00 |
|Hydrogen | 0·184 | 2·7 |
|Carbon dioxide | 1·69 | 1·10 |
|Sulphur dioxide| 2·64 | 1·21 |
|Chloroform | 4·7 | 1·09 |
+———————-+—————+———————————————-+

With the exception of hydrogen, the ionization produced in different gases is approximately proportional to their density. The relative ionization is very similar to that observed by Strutt (section 45) for gases exposed to the influence of the α and β rays from radio-active substances, and points to the conclusion that the ionization observed may be due either to a radiation from the walls of the vessel or from external sources.

Jaffé[62] has made a careful examination of the natural ionization in the very heavy gas nickel-carbonyl, Ni(CO)_{4}, in a small silvered glass vessel. The ionization of this gas was 5·1 times that of air at normal pressure while its density is 5·9 times that of air. The leak of the electroscope was nearly proportional to the pressures except at low pressure, when the leak was somewhat greater than would be expected if the pressure law held. The fact that a gas of such high density and complicated structure behaves like the simpler and lighter gases is a strong indication that the ionization itself is due to a radiation from the walls of the vessel and not to a spontaneous ionization of the gas. Patterson[63] examined the variation of the ionization of air with pressure in a large iron vessel of diameter 30 cms. and length 20 cms. The current between a central electrode and the cylinder was measured by means of a sensitive Dolezalek electrometer. He found that the saturation current was practically independent of the pressure for pressures greater than 300 mms. of mercury. Below a pressure of 80 mms. the current varied directly as the pressure. For air at atmospheric pressure, the current was independent of the temperature up to 450° C. With further increase of temperature, the current began to increase, and the increase was more rapid when the central electrode was charged negatively than when it was charged positively. This difference was ascribed to the production of positive ions at the surface of the iron vessel. The results obtained by Patterson render it very improbable that the ionization observed in air is due to a spontaneous ionization of the enclosed air: for we should expect the amount of this ionization to depend on the temperature of the gas. On the other hand, these results are to be expected if the ionization of the enclosed air is mainly due to an easily absorbed radiation from the walls of the vessel. If this radiation had a penetrating power about equal to that observed for the α rays of the radio-elements, the radiation would be absorbed in a few centimetres of air. With diminution of pressure, the radiations would traverse a greater distance of air before complete absorption, but the total ionization produced by the rays would still remain about the same, until the pressure was reduced sufficiently to allow the radiation to traverse the air space in the vessel without complete absorption. With still further diminution of pressure, the total ionization produced by the radiation, and in consequence the current observed, would vary directly as the pressure.


286. Examination of ordinary matter for radio-activity. Strutt[64], McLennan and Burton[65], and Cooke[66], independently ob-*

  • served about the same time that ordinary matter is radio-active

to a slight degree. Strutt, by means of an electroscope, observed that the ionization produced in a closed vessel varied with the material of the vessel. A glass vessel with a removable base was employed and the vessel was lined with the material to be examined. The following table shows the relative results obtained. The amount of leakage observed is expressed in terms of the number of scale divisions of the eye-piece passed over per hour by the gold-leaf:

+——————————————————+—————————+
| Material of lining of vessel | Leakage in scale |
| |divisions per hour|
+——————————————————+—————————+
|Tinfoil | 3·3 |
| " another sample | 2·3 |
|Glass coated with phosphoric acid | 1·3 |
|Silver chemically deposited on glass| 1·6 |
|Zinc | 1·2 |
|Lead | 2·2 |
|Copper (clean) | 2·3 |
| " (oxidized) | 1·7 |
|Platinum (various samples) | 2·0, 2·9, 3·9 |
|Aluminium | 1·4 |
+——————————————————+—————————+

There are thus marked differences in the leakage observed for different materials and also considerable differences in different samples of the same metal. For example, one specimen of platinum caused nearly twice the leakage of another sample from a different stock.

McLennan and Burton, on the other hand, measured by means of a sensitive electrometer the ionization current produced in the air in a closed iron cylinder 25 cms. in diameter and 130 cms. in length, in which an insulated central electrode was placed. The open cylinder was first exposed for some time at the open window of the laboratory. It was then removed, the top and bottom closed, and the saturation current through the gas determined as soon as possible. In all cases it was observed that the current diminished for two or three hours to a minimum and then very slowly increased again. In one experiment, for example, the initial current observed corresponded to 30 on an arbitrary scale. In the course of four hours the current fell to a minimum of 6·6, and 44 hours later had risen to a practical maximum of 24. The initial decrease observed is probably due to a radio-activity of the enclosed air or walls of the vessel, which decayed rapidly with the time. The decay of the excited activity produced on the interior surface of the cylinder when exposed to the air was probably responsible for a part of the decrease observed. McLennan ascribes the increase of current with time to a radio-active emanation which is given off from the cylinder, and ionizes the enclosed air. On placing linings of lead, tin, and zinc in the iron cylinder, considerable differences were observed both for the minimum current and also for the final maximum. Lead gave about twice the current due to zinc, while tin gave an intermediate value. These results are similar in character to those obtained by Strutt.

McLennan and Burton also investigated the effect of diminution of pressure on the current. The cylinder was filled with air to a pressure of 7 atmospheres, and allowed to stand until the current reached a constant value. The air was then allowed to escape and the pressure reduced to 44 mms. of mercury. The current was found to vary approximately as the pressure over the whole range. These results are not in agreement with the results of Patterson already described, nor with some later experiments of Strutt. McLennan's results however point to the conclusion that the ionization was mainly due to an emanation emitted from the metal. Since the air was rapidly removed, a proportionate amount of the emanation would be removed also, and it might thus be expected that the current would vary directly as the pressure. If this is the case the current through the gas at low pressures should increase again to a maximum if time is allowed for a fresh emanation to form.

H. L. Cooke, using an electroscopic method, obtained results very similar to those given by Strutt. Cooke observed that a penetrating radiation was given out from brick. When a brass vessel containing the gold-leaf system was surrounded by brick, the discharge of the electroscope was increased by 40 to 50 per cent. This radiation was of about the same penetrating power as the rays from radio-active substances. The rays were completely absorbed by surrounding the electroscope with a sheet of lead 2 mms. in thickness. This result is in agreement with the observation of Elster and Geitel, already mentioned, that radio-active matter was present in clay freshly dug up from the earth.

Cooke also observed that the ionization of the air in a brass electroscope could be reduced to about one-third of its usual value if the interior surface of the brass was carefully cleaned. By removing the surface of the brass he was able to reduce the ionization of the enclosed air from 30 to 10 ions per c.c. per second. This is an important observation, and indicates that a large proportion of the radio-activity observed in ordinary matter is due to a deposit of radio-active matter on its surface. It has already been shown that bodies which have been exposed in the presence of the radium emanation retain a residual activity which decays extremely slowly. There can be no doubt that the radium emanation is present in the atmosphere, and the exposed surface of matter, in consequence, will become coated with an invisible film of radio-active matter, deposited from the atmosphere. On account of the slow decay of this activity it is probable that the activity of matter exposed in the open air would steadily increase for a long interval. Metals, even if they are originally inactive, would thus acquire a fairly permanent activity, but it should be possible to get rid of this by removing the surface of the metal or by chemical treatment. The rapid increase of activity of all matter left in a laboratory in which a large quantity of emanation has been released has been drawn attention to by Eve[67]. This superficial activity, due to the products radium D, E, and F, was mainly removed by placing the metal in strong acid.

A number of experiments have been made by J. J. Thomson, N. R. Campbell, and A. Wood in the Cavendish laboratory to examine whether the radio-activity observed in ordinary matter is a specific property of such matter or is due to the presence of some radio-active impurity. An account of these experiments was given by Professor J. J. Thomson in a discussion on the Radio-activity of Ordinary Matter at the British Association meeting at Cambridge, 1904. The results[68], as a whole, support the view that each substance gives out a characteristic type or types of radiation and that the radiation is a specific property of the substance. J. J. Thomson[69] has made experiments to observe the action of different substances in cutting off the external very penetrating radiation (section 279) observed by Cooke and McLennan. He found that some substances cut off this external radiation, while others had little if any effect. For example, the ionization in a closed vessel was reduced 17 per cent. by surrounding it with a thick lead envelope; but, on surrounding it with an equivalent absorbing thickness of water, or water mixed with sand, no sensible diminution was observed. In other experiments Wood[70] found that the diminution of the ionization by a given screen depended upon the material of the vessel. For example, the ionization in a lead vessel, surrounded by a lead screen, was reduced 10 per cent., while in an iron vessel it was reduced 24 per cent. He concludes from his experiments that the ionization observed in a closed vessel has a threefold origin. Part of it is due to an external penetrating radiation, part to a secondary radiation set up by it, while the remainder is due to an intrinsic radiation from the walls, altogether independent of the external radiation.

In some experiments of Campbell[71], the variation of the ionization current between two parallel plates was observed for a progressive increase of the distance between them. The effects observed are shown in Fig. 105. The curves at first rise rapidly, then bend over and finally become a straight line. The knee of the curve is at a different distance for the different substances. The shape of these curves indicates that two types of radiation are present, one of which is readily absorbed in the gas while the other, a more penetrating type of radiation, extends over the whole distance between the plates. In another series of experiments, one side of the testing vessel was of thin aluminium, and the ionization current was observed when an exterior screen was brought up to it. Lead gave a considerable increase, but the radiation from it was readily absorbed by an interposed screen. The radiation emitted by carbon and zinc was more than twice as penetrating as from lead. Attempts were made to see whether a radio-active emanation was given off by dissolving solid substances and then keeping the solutions in a closed vessel and afterwards testing the activity of the air drawn from them. In some cases an emanation was observed, but the amount varied with different specimens of the same material; in others no effect was detected.

Fig. 105.

When linings of different substances were placed in a closed testing vessel, the ionization current in most cases fell at first, passed through a minimum, and then slowly increased to a maximum. For lead the maximum was reached in 9 hours, for tin in 14 and for zinc in 18 hours. These results indicate that an emanation is given off from the metal, and that the amount reaches a maximum value at different intervals in the various cases. This was confirmed by an examination of a piece of lead which was left in radium-free nitric acid. Twenty times the normal effect was observed after this treatment. This is probably due to the increase of porosity of the lead which allows a greater fraction of the emanation produced in the metal to diffuse out with the gas.

The activity observed in ordinary matter is extremely small. The lowest rate of production of ions yet observed is 10 per cubic centimetre per second in a brass vessel. Suppose a spherical brass vessel is taken of capacity 1 litre. The area of the interior surface would be about 480 sq. cms. and the total number of ions produced per second would be about 10^4. Now it has been shown, in section 252, that an α particle projected from radium itself gives rise to 8·6 × 10^4 ions before it is absorbed in the gas. An expulsion of one α particle every 8 seconds from the whole vessel, or of one α particle from each square centimetre of surface per hour would thus account for the minute conductivity observed. Even if it were supposed that this activity is the result of a breaking up of the matter composing the vessel, the disintegration of one atom per second per gram, provided it was accompanied by the expulsion of an α particle, would fully account for the conductivity observed.

While the experiments, already referred to, afford strong evidence that ordinary matter does possess the property of radio-activity to a feeble degree, it must not be forgotten that the activity observed is excessively minute, compared even with a weak radio-active substance like uranium or thorium. The interpretation of the results is complicated, too, by the presence of the radium emanation in the atmosphere, for we have seen that the surface of every body exposed to the open air must become coated with the slowly changing transformation products of the radium emanation. The distribution of radio-active matter throughout the constituents of the earth renders it difficult to be certain that any substance, however carefully prepared, is freed from radio-active impurities. If matter in general is radio-active, it must be undergoing transformation at an excessively slow rate, unless it be supposed (see Appendix A) that changes of a similar character to those observed in the radio-elements may occur without the appearance of their characteristic radiations.

  1. Geitel, Phys. Zeit. 2, p. 116, 1900.
  2. C. T. R. Wilson, Proc. Camb. Phil. Soc. 11, p. 32, 1900. Proc. Roy. Soc. 68, p. 151, 1901.
  3. Elster and Geitel, Phys. Zeit. 2, p. 590, 1901.
  4. Elster and Geitel, Phys. Zeit. 3, p. 76, 1901.
  5. Rutherford and Allan, Phil. Mag. Dec. 1902.
  6. Allan, Phil. Mag. Feb. 1904.
  7. C. T. R. Wilson, Proc. Camb. Phil. Soc. 11, p. 428, 1902.
  8. C. T. R. Wilson, Proc. Camb. Phil. Soc. 11, p. 428, 1902; 12, p. 17, 1903.
  9. C. T. R. Wilson, Proc. Camb. Phil. Soc. 12, p. 85, 1903.
  10. Allan, Phys. Rev. 16, p. 106, 1903.
  11. McLennan, Phys. Rev. 16, p. 184, 1903.
  12. Schmauss, Annal. d. Phys. 9, p. 224, 1902.
  13. Elster and Geitel, Phys. Zeit. 3, p. 574, 1902.
  14. Ebert and Ewers, Phys. Zeit. 4, p. 162, 1902.
  15. Sarasin, Tommasina and Micheli, C. R. 139, p. 917, 1905.
  16. J. J. Thomson, Phil. Mag. Sept. 1902.
  17. Ebert, Sitz. Akad. d. Wiss. Munich, 33, p. 133, 1903.
  18. J. J. Thomson, Phil. Mag. Sept. 1902.
  19. Adams, Phil. Mag. Nov. 1903.
  20. Bumstead and Wheeler, Amer. Journ. Science, 17, p. 97, Feb. 1904.
  21. Bumstead, Amer. Journ. Science, 18, July, 1904.
  22. Dadourian, Amer. Journ. Science, 19, Jan. 1905.
  23. H. S. Allen and Lord Blythswood, Nature, 68, p. 343, 1903; 69, p. 247, 1904.
  24. Strutt, Proc. Roy. Soc. 73, p. 191, 1904.
  25. Himstedt, Ann. d. Phys. 13, p. 573, 1904.
  26. Elster and Geitel, Phys. Zeit. 5, No. 12, p. 321, 1904.
  27. Dorn, Abhandl. d. Natur. Ges. Halle, 25, p. 107, 1904.
  28. Schenck, Thesis Univ. Halle, 1904.
  29. Mache, Wien. Ber. 113, p. 1329, 1904.
  30. Curie and Laborde, C. R. 138, p. 1150, 1904.
  31. Blanc, Phil. Mag. Jan. 1905.
  32. Boltwood, Amer. Journ. Science, 18, Nov. 1904.
  33. Elster and Geitel, Phys. Zeit. 4, p. 522, 1903.
  34. Elster and Geitel, Phys. Zeit. 5, No. 1, p. 11, 1903.
  35. Vincenti and Levi Da Zara, Atti d. R. Instit. Veneto d. Scienze, 54, p. 95, 1905.
  36. Burton, Phil. Mag. Oct. 1904.
  37. Elster and Geitel, Phys. Zeit. 6, No. 3, p. 67, 1905.
  38. Rutherford and Allan, Phil. Mag. Dec. 1902.
  39. Elster and Geitel, Phys. Zeit. 4, p. 138, 1902; 4, p. 522, 1903.
  40. Saake, Phys. Zeit. 4, p. 626, 1903.
  41. Simpson, Proc. Roy. Soc. 73, p. 209, 1904.
  42. McLennan, Phys. Rev. 16, p. 184, 1903, and Phil. Mag. 5, p. 419, 1903.
  43. McLennan, Phys. Rev. No. 4, 1903.
  44. Rutherford and Cooke, Americ. Phys. Soc. Dec. 1902.
  45. Cooke, Phil. Mag. Oct. 1903.
  46. Allan, Phil. Mag. Feb. 1904.
  47. Ebert, Phys. Zeit. 2, p. 622, 1901. Zeitschr. f. Luftschiffahrt, 4, Oct. 1902.
  48. Schuster, Proc. Manchester Phil. Soc. p. 488, No. 12, 1904.
  49. Mache and Von Schweidler, Phys. Zeit. 6, No. 3, p. 71, 1905.
  50. Langevin, C. R. 140, p. 232, 1905.
  51. Schuster, British Assoc. 1903.
  52. J. J. Thomson, Conduction of Electricity through Gases, p. 324, 1903.
  53. Miss Gates, Phys. Rev. 17, p. 499, 1903.
  54. Villard, Société de Physique, July, 1900.
  55. Geitel, Phys. Zeit. 2, p. 116, 1900.
  56. C. T. R. Wilson, Proc. Camb. Phil. Soc. 11, p. 52, 1900. Proc. Roy. Soc. 68, p. 152, 1901.
  57. Rutherford and Allan, Phil. Mag. Dec. 1902.
  58. Patterson, Phil. Mag. August, 1903.
  59. Harms, Phys. Zeit. 4, No. 1, p. 11, 1902.
  60. Cooke, Phil. Mag. Oct. 1903.
  61. Wilson, Proc. Roy. Soc. 69, p. 277, 1901.
  62. Jaffé, Phil. Mag. Oct. 1904.
  63. Patterson, Phil. Mag. Aug. 1903.
  64. Strutt, Phil. Mag. June, 1903. Nature, Feb. 19, 1903.
  65. McLennan and Burton, Phys. Rev. No. 4, 1903. J. J. Thomson, Nature, Feb. 26, 1903.
  66. Cooke, Phil. Mag. Aug. 6, 1903. Rutherford, Nature, April 2, 1903.
  67. Eve, Nature, March 16, 1905.
  68. See article in Le Radium, No. 3, p. 81, Sept. 15, 1904.
  69. J. J. Thomson, Proc. Camb. Phil. Soc. 12, p. 391, 1904.
  70. Wood, Phil. Mag. April, 1905.
  71. Campbell, Nature, p. 511, March 31, 1904. Phil. Mag. April, 1905.