The Chemical History of a Candle/Lecture IV
LECTURE IV.
HYDROGEN IN THE CANDLE—BURNS INTO WATER—THE OTHER PART OF WATER—OXYGEN.
I SEE you are not tired of the candle yet, or I am sure you would not be interested in the subject in the way you are. When our candle was burning, we found it produced water exactly like the water we have around us; and by further examination of this water we found in it that curious body, hydrogen—that light substance of which there is some in this jar. We afterwards saw the burning powers of that hydrogen, and that it produced water. And I think I introduced to your notice an apparatus which I very briefly said was an arrangement of chemical force, or power, or energy, so adjusted as to convey its power to us in these wires; and I said I should use that force to pull the water to pieces, to see what else there was in the water besides hydrogen; because, you remember, when we passed the water through the iron tube, we by no means got the weight of water back which we put in, in the form of steam, though we had a very large quantity of gas evolved. We have now to see what is the other substance present. That you may understand the character and use of this instrument, let us make an experiment or two. Let us put together, first of all, some substances, knowing what they are, and then see what that instrument does to them. There is some copper (observe the various changes which it can undergo), and here is some nitric acid, and you will find that this, being a strong chemical agent, will act very powerfully when I add it to the copper. It is now sending forth a beautiful red vapour; but as we do not want that vapour, Mr. Anderson will hold it near the chimney for a short time, that we may have the use and beauty of the experiment without the annoyance. The copper which I have put into the flask will dissolve: it will change the acid and the water into a blue fluid, containing copper and other things; and I propose then shewing you how this voltaic battery deals with it; and in the meantime we will arrange another kind of experiment for you to see what power it has. This is a substance which is to us like water that is to say, it contains bodies which we do not know of as yet, as water—
I have here two pieces of platinum, and if I lay them down upon this piece of paper [the moistened paper on the tinfoil], you will see no action; and if I take them up, there is no change that you can see, but the arrangement remains just as it was before. But, now, see what happens: if I take these two poles and put either one or the other of them down separately on the platinum-plates, they do nothing for me, both are perfectly without action; but if I let them both be in contact at the same moment, see what happens [a brown spot appeared under each pole of the battery]. Look here at the effect that takes place, and see how I have pulled something apart from the white—
You see we have here drawn something, which we have not known about before, out of this solution. Let us now take that flask from Mr. Anderson's hands, and see what we can draw out of that. This, you know, is a liquid which we have just made up from copper and nitric acid, whilst our other experiments were in hand; and though I am making this experiment very hastily, and may bungle a little, yet I prefer to let you see what I do rather than prepare it beforehand.
Now, see what happens. These two platinum plates are the two ends (or I will make them so immediately) of this apparatus; and I am about to put them in contact with that solution just as we did a moment ago on the paper. It does not matter to us whether the solution be on the paper or whether it be in the jar, so long as we bring the ends of the apparatus to it. If I put the two platinums in by themselves, they come out as clean and as white as they go in [inserting them into the fluid without connecting them with the battery]; but when we take the power and lay that on [the platinums were connected with the battery and again dipped into the solution], this, you see [exhibiting one of the platinums], is at once turned into copper, as it were: it has become like a plate of copper; and that [exhibiting the other piece of platinum] has come out quite clean. If I take this coppered piece and change sides, the copper will leave the right-hand side and come over to the left side; what was before the coppered plate comes out clean, and the plate which was clean comes out coated with copper; and thus you see that the same copper we put into this solution we can also take out of it by means of this instrument.
Putting that solution aside, let us now see what effect this instrument will have upon water. Here are two little platinum-plates which I intend to make the ends of the battery, and this (C) is a little vessel so shaped as to enable me to take it to pieces, and shew you its construction. In these two cups (A and B) I pour mercury, which touches the ends of the wires connected with the platinum-plates. In the vessel (C) I pour some water containing a little acid (but which is put only for the purpose of facilitating the action; it undergoes no change in the process), and connected with the top of the vessel is a bent glass tube (D), which may remind you of the pipe which was connected with the gun barrel in our furnace experiment, and which now passes under the jar (F). I have now adjusted this apparatus, and we will proceed to affect the water in some way or other. In the other case, I sent the water through a tube which was made red-hot; I am now going to pass the electricity through the contents of this vessel. Perhaps I may boil the water; if I do boil the water, I shall get steam; and you know that steam condenses when it gets cold, and you will therefore see by that whether I do boil the water or not. Perhaps, however, I shall not boil the water, but produce some other effect. You shall have the experiment and see. There is one wire which I will put to this side (A), and here is the other wire which I will put to the other side (B), and you will soon see whether any disturbance takes place. Here it is seeming to boil up famously; but does it boil? Let us see whether that which goes out is steam or not. I think you will soon see the jar (F) will be filled with vapour, if that which rises from the water is steam. But can it be steam? Why, certainly not; because there it remains, you see, unchanged. There it is standing over the water, and it cannot therefore be steam, but must be a permanent gas of some sort. What is it? Is it hydrogen? Is it anything else? Well, we will examine it. If it is hydrogen, it will burn. [The Lecturer then ignited a portion of the gas collected, which burnt with an explosion.] It
is certainly something combustible, but not combustible in the way that hydrogen is. Hydrogen would not have given you that noise; but the colour of that light, when the thing did burn, was like that of hydrogen: it will, however, burn without contact with the air. That is why I have chosen this other form of apparatus, for the purpose of pointing out to you what are the particular circumstances of this experiment. In place of an open vessel I have taken one that is closed (our battery is so beautifully active that we are even boiling the mercury, and getting all things right—not wrong, but vigorously right); and I am going to shew you that that gas, whatever it may be, can burn without air, and in that respect differs from a candle, which cannot burn without the air. And our manner of doing this is as follows:—
We are here dealing with water entirely, without reference to the atmosphere. The water of the candle had the atmosphere helping to produce it; but in this way it can be produced independently of the air. Water, therefore, ought to contain that other substance which the candle takes from the air, and which, combining with the hydrogen, produces water.
Just now you saw that one end of this battery took hold of the copper, extracting it from the vessel which contained the blue solution. It was effected by this wire; and surely we may say, if the battery has such power with a metallic solution which we made and unmade, may we not find that it is possible to split asunder the component parts of the water, and put them into this place and that place? Suppose I take the poles—the metallic ends of this battery—and see what will happen
with the water in this apparatus (fig. 20), where we have separated the two ends far apart. I place one here (at A), and the other there (at B), and I have little shelves with holes which I can put upon each pole, and so arrange them that whatever escapes from the two ends of the battery will appear as separate gases; for you saw that the water did not become vaporous, but gaseous. The wires are now in perfect and proper connection with the vessel containing the water; and you see the bubbles rising: let us collect these bubbles and see what they are. Here is a glass cylinder (O); I fill it with water and put it over one end (A) of the pile; and I will take another (H) and put it over the other end (B) of the pile. And so now we have a double apparatus, with both places delivering gas. Both these jars will fill with gas. There they go, that to the right (H) filling very rapidly; the one to the left (O) filling not so rapidly; and though I have allowed some bubbles to escape, yet still the action is going on pretty regularly; and were it not that one is rather smaller than the other, you would see that I should have twice as much in this (H) as I have in that (O). Both these gases are colourless; they stand over the water without condensing; they are alike in all things—
Τhink of all its qualities—the light gas which stood well in inverted vessels, burning with a pale flame at the mouth of the jar—and see whether this gas does not satisfy all these conditions. If it be hydrogen, it will remain here while I hold this jar inverted. [A light was then applied, when the hydrogen burnt] What is there now in the other jar? You know that the two together made an explosive mixture. But what can this be which we find as the other constituent in water, and which must therefore be that substance which made the hydrogen burn? We know that the water we put into the vessel consisted of the two things together. We find one of these is hydrogen: what must that other be which was in the water before the experiment, and which we now have by itself? I am about to put this lighted splinter of wood into the gas. The gas itself will not burn, but it will make the splinter of wood burn. [The Lecturer ignited the end of the wood, and introduced it into the jar of gas.] See how it invigorates the combustion of the wood, and how it makes it burn far better than the air would make it burn; and now you see by itself that every other substance which is contained in the water, and which, when the water was formed by the burning of the candle, must have been taken from the atmosphere. What shall we call it, A, B, or C? Let us call it O—
We shall now begin to understand more clearly our experiments and researches; because, when we have examined these things once or twice, we shall soon see why a candle burns in the air. When we have in this way analysed the water—
I had better, perhaps, tell you now how we get this oxygen abundantly, having shewn you how we can separate it from the water. Oxygen, as you will immediately imagine, exists in the atmosphere; for how should the candle burn to produce water without it?
1 Hydrogen |
8 Oxygen. |
9 |
Oxygen, | 88.9 |
Hydrogen, | 11.1 |
Water, | 100.0 |
Such a thing would be absolutely impossible, and chemically impossible, without oxygen.
Can we get it from the air? Well, there are some very complicated and difficult processes by which we can get it from the air; but we have better processes. There is a substance called the black oxide of manganese: it is a very black-looking mineral, but very useful, and when made red-hot it gives out oxygen. Here is an iron bottle which has had some of this substance put into it, and there is a tube fixed to it, and a fire ready made, and Mr. Anderson will put that retort into the fire, for it is made of iron, and can stand the heat. Here is a salt called chlorate of potassa, which is now made in large quantities for bleaching, and chemical and medical uses, and for pyrotechnic and other purposes. I will take some and mix it with some of the oxide of manganese (oxide of copper, or oxide of iron would do as well); and if I put these together in a retort, far less than a red heat is sufficient to evolve this oxygen from the mixture. I am not preparing to make much, because we only want sufficient for our experiments; only, as you will see immediately, if I use too small a charge, the first portion of the gas will be mixed with the air already in the retort, and I should be obliged to sacrifice the first portion of the gas, because it would be so much diluted with air; the first portion must therefore be thrown away. You will find in this case, that a common spirit-lamp is quite sufficient for me to get the oxygen, and so we shall have two processes going on for its preparation. See how freely the gas is coming over from that small portion of the mixture. We will examine it, and see what are its properties. Now, in this way we are producing, as you will observe, a gas just like the one we had in the experiment with the battery, transparent, undissolved by water, and presenting the ordinary visible properties of the atmosphere. (As this first jar contains the air, together with the first portions of the oxygen set free during the preparation, we will carry it out of the way, and be prepared to make our experiments in a regular, dignified manner.) And, inasmuch as that power of making wood, wax, or other things burn, was so marked in the oxygen we obtained by means of the voltaic battery from water, we may expect to find the same property here. We will try it. You see there is the combustion of a lighted taper in air, and here is its combustion in this gas [lowering the taper into the jar]. See how brightly and how beautifully it burns! You can also see more than this,—
Now, as regards this very property of oxygen supporting combustion, which we may compare to air, I will take a piece of candle to shew it you in a rough way, and the result will be rough. There is our candle burning in the air: how will it burn in oxygen? I have here a jar of this gas, and I am about to put it over the candle for you to compare the action of this gas with that of the air. Why, look at it: it looks something like the light you saw at the poles of the voltaic battery. Think how vigorous that action must be! And yet, during all that action, nothing more is produced than what is produced by the burning of the candle in air. We have the same production of water, and the same phenomena exactly, when we use this gas instead of air, as we have when the candle is burnt in air.
But now we have got a knowledge of this new substance, we can look at it a little more distinctly, in order to satisfy ourselves that we have got a good general understanding of this part of the product of a candle. It is wonderful how great the supporting powers of this substance are as regards combustion. For instance, here is a lamp which, simple though it be, is the original, I may say, of a great variety of lamps which are constructed for divers purposes—
We will now put that on one side, and take some other substance; but we must limit our experiments, for we have not time to spare for all the illustrations you would have a right to if we had more time. We will take a piece of sulphur you know how sulphur—
I am now about to shew you the combustion of another substance—
Thus far we have tested this power of oxygen, and the high combustion it produces by means of other substances. We must now, for a little while longer, look at it as respects the hydrogen. You know, when we allowed the oxygen and the hydrogen derived from the water to mix and burn together, we had a little explosion. You remember, also, that when I burnt the oxygen and the hydrogen in a jet together, we got very little light, but great heat. I am now about to set fire to oxygen and hydrogen, mixed in the proportion in which they occur in water. Here is a vessel containing one volume of oxygen and two volumes of hydrogen. This mixture is exactly of the same nature as the gas we just now obtained from the voltaic battery: it would be far too much to burn at once; I have therefore arranged to blow soap-bubbles with it, and burn those bubbles, that we may see by a general experiment or two how this oxygen supports the combustion of the hydrogen. First of all, we will see whether we can blow a bubble. Well, there goes the gas [causing it to issue through a tobacco-pipe into some soap-suds]. Here I have a bubble. I am receiving them on my hand: and you will perhaps think I am acting oddly in this experiment; but it is to shew you that we must not always trust to noise and sounds, but rather to real facts. [Exploding a bubble on the palm of his hand.] I am afraid to fire a bubble from the end of the pipe, because the explosion would pass up into the jar and blow it to pieces. This oxygen then will unite with the hydrogen, as you see by the phenomena, and hear by the sound, with the utmost readiness of action, and all its powers are then taken up in its neutralisation of the qualities of the hydrogen.
So now I think you will perceive the whole history of water with reference to oxygen and the air, from what we have before said. Why does a piece of potassium decompose water? Because it finds oxygen in the water. What is set free when I put it in the water, as I am about to do again? It sets free hydrogen, and the hydrogen burns; but the potassium itself combines with oxygen; and this piece of potassium, in taking the water apart—
It will be my place, when next we meet, having pointed out these anomalous actions, to shew you that none of these extra and strange effects are met with by us that none of these strange and injurious actions take place when we are burning, not merely a candle, but gas in our streets, or fuel in our fireplaces, so long as we confine ourselves within the laws that Nature has made for our guidance.
- ↑ A solution of acetate of lead submitted to the action of the voltaic current, yields lead at the negative pole, and brown peroxide of lead at the positive pole. A solution of nitrate of silver, under the same circumstances, yields silver at the negative pole, and peroxide of silver at the positive pole.