Jump to content

The Story of Evolution/Chapter II

From Wikisource
The Story of Evolution
by Joseph McCabe
Chapter II. The Foundations of the Universe
392704The Story of Evolution — Chapter II. The Foundations of the UniverseJoseph McCabe

To the mind of the vast majority of earlier observers the phrase "foundations of the universe" would have suggested something enormously massive and solid. From what we have already seen we are prepared, on the contrary, to pass from the inconceivably large to the inconceivably small. Our sun is, as far as our present knowledge goes, one of modest dimensions. Arcturus and Canopus must be thousands of times larger than it. Yet our sun is 320,000 times heavier than the earth, and the earth weighs some 6,000,000,000,000,000,000,000 tons. But it is only in resolving these stupendous masses into their tiniest elements that we can reach the ultimate realities, or foundations, of the whole.

Modern science rediscovered the atoms of Democritus, analysed the universe into innumerable swarms of these tiny particles, and then showed how the infinite variety of things could be built up by their combinations. For this it was necessary to suppose that the atoms were not all alike, but belonged to a large number of different classes. From twenty-six letters of the alphabet we could make millions of different words. From forty or fifty different "elements" the chemist could construct the most varied objects in nature, from the frame of a man to a landscape. But improved methods of research led to the discovery of new elements, and at last the chemist found that he had seventy or eighty of these "ultimate realities," each having its own very definite and very different characters. As it is the experience of science to find unity underlying variety, this was profoundly unsatisfactory, and the search began for the great unity which underlay the atoms of matter. The difficulty of the search may be illustrated by a few figures. Very delicate methods were invented for calculating the size of the atoms. Laymen are apt to smile—it is a very foolish smile—at these figures, but it is enough to say that the independent and even more delicate methods suggested by recent progress in physics have quite confirmed them.

Take a cubic millimetre of hydrogen. As a millimetre is less than 1/25th of an inch, the reader must imagine a tiny bubble of gas that would fit comfortably inside the letter "o" as it is printed here. The various refined methods of the modern physicist show that there are 40,000 billion molecules (each consisting of two atoms of the gas) in this tiny bubble. It is a little universe, repeating on an infinitesimal scale the numbers and energies of the stellar universe. These molecules are not packed together, moreover, but are separated from each other by spaces which are enormous in proportion to the size of the atoms. Through these empty spaces the atoms dash at an average speed of more than a thousand miles an hour, each passing something like 6,000,000,000 of its neighbours in the course of every second. Yet this particle of gas is a thinly populated world in comparison with a particle of metal. Take a cubic centimetre of copper. In that very small square of solid matter (each side of the cube measuring a little more than a third of an inch) there are about a quadrillion atoms. It is these minute and elusive particles that modern physics sets out to master.

At first it was noticed that the atom of hydrogen was the smallest or lightest of all, and the other atoms seemed to be multiples of it. A Russian chemist, Mendeleeff, drew up a table of the elements in illustration of this, grouping them in families, which seemed to point to hydrogen as the common parent, or ultimate constituent, of each. When newly discovered elements fell fairly into place in this scheme the idea was somewhat confidently advanced that the evolution of the elements was discovered. Thus an atom of carbon seemed to be a group of 12 atoms of hydrogen, an atom of oxygen 16, an atom of sulphur 32, an atom of copper 64, an atom of silver 108, an atom of gold 197, and so on. But more correct measurements showed that these figures were not quite exact, and the fraction of inexactness killed the theory.

Long before the end of the nineteenth century students were looking wistfully to the ether for some explanation of the mystery. It was the veiled statue of Isis in the scientific world, and it resolutely kept its veil in spite of all progress. The "upper and limpid air" of the Greeks, the cosmic ocean of Giordano Bruno, was now an established reality. It was the vehicle that bore the terrific streams of energy from star to planet across the immense reaches of space. As the atoms of matter lay in it, one thought of the crystal forming in its mother-lye, or the star forming in the nebula, and wondered whether the atom was not in some such way condensed out of the ether. By the last decade of the century the theory was confidently advanced—notably by Lorentz and Larmor—though it was still without a positive basis. How the basis was found, in the last decade of the nineteenth century, may be told very briefly.

Sir William Crookes had in 1874 applied himself to the task of creating something more nearly like a vacuum than the old air-pumps afforded. When he had found the means of reducing the quantity of gas in a tube until it was a million times thinner than the atmosphere, he made the experiment of sending an electric discharge through it, and found a very curious result. From the cathode (the negative electric point) certain rays proceeded which caused a green fluorescence on the glass of the tube. Since the discharge did not consist of the atoms of the gas, he concluded that it was a new and mysterious substance, which he called "radiant matter." But no progress was made in the interpretation of this strange material. The Crookes tube became one of the toys of science—and the lamp of other investigators.

In 1895 Rontgen drew closer attention to the Crookes tube by discovering the rays which he called X-rays, but which now bear his name. They differ from ordinary light-waves in their length, their irregularity, and especially their power to pass through opaque bodies. A number of distinguished physicists now took up the study of the effect of sending an electric discharge through a vacuum, and the particles of "radiant matter" were soon identified. Sir J. J. Thomson, especially, was brilliantly successful in his interpretation. He proved that they were tiny corpuscles, more than a thousand times smaller than the atom of hydrogen, charged with negative electricity, and travelling at the rate of thousands of miles a second. They were the "electrons" in which modern physics sees the long-sought constituents of the atom.

No sooner had interest been thoroughly aroused than it was announced that a fresh discovery had opened a new shaft into the underworld. Sir J. J. Thomson, pursuing his research, found in 1896 that compounds of uranium sent out rays that could penetrate black paper and affect the photographic plate; though in this case the French physicist, Becquerel, made the discovery simultaneously' and was the first to publish it. An army of investigators turned into the new field, and sought to penetrate the deep abyss that had almost suddenly disclosed itself. The quickening of astronomy by Galilei, or of zoology by Darwin, was slight in comparison with the stirring of our physical world by these increasing discoveries. And in 1898 M. and Mme. Curie made the further discovery which, in the popular mind, obliterated all the earlier achievements. They succeeded in isolating the new element, radium, which exhibits the actual process of an atom parting with its minute constituents.

The story of radium is so recent that a few lines will suffice to recall as much as is needed for the purpose of this chapter. In their study of the emanations from uranium compounds the Curies were led to isolate the various elements of the compounds until they discovered that the discharge was predominantly due to one specific element, radium. Radium is itself probably a product of the disintegration of uranium, the heaviest of known metals, with an atomic weight some 240 times greater than that of hydrogen. But this massive atom of uranium has a life that is computed in thousands of millions of years. It is in radium and its offspring that we see most clearly the constitution of matter.

A gramme (less than 15 1/2 grains) of radium contains—we will economise our space—4x1021 atoms. This tiny mass is, by its discharge, parting with its substance at the rate of one atom per second for every 10,000,000,000 atoms; in other words, the "indestructible" atom has, in this case, a term of life not exceeding 2500 years. In the discharge from the radium three elements have been distinguished. The first consists of atoms of the gas helium, which are hurled off at between 10,000 and 20,000 miles a second. The third element (in the order of classification) consists of waves analogous to the Rontgen rays. But the second element is a stream of electrons, which are expelled from the atom at the appalling speed of about 100,000 miles a second. Professor Le Bon has calculated that it would take 340,000 barrels of powder to discharge a bullet at that speed. But we shall see more presently of the enormous energy displayed within the little system of the atom. We may add that after its first transformation the radium passes, much more quickly, through a further series of changes. The frontiers of the atomic systems were breaking down.

The next step was for students (notably Soddy and Rutherford) to find that radio-activity, or spontaneous discharge out of the atomic systems, was not confined to radium. Not only are other rare metals conspicuously active, but it is found that such familiar surfaces as damp cellars, rain, snow, etc., emit a lesser discharge. The value of the new material thus provided for the student of physics may be shown by one illustration. Sir J. J. Thomson observes that before these recent discoveries the investigator could not detect a gas unless about a billion molecules of it were present, and it must be remembered that the spectroscope had already gone far beyond ordinary chemical analysis in detecting the presence of substances in minute quantities. Since these discoveries we can recognise a single molecule, bearing an electric charge.

With these extraordinary powers the physicist is able to penetrate a world that lies immeasurably below the range of the most powerful microscope, and introduce us to systems more bewildering than those of the astronomer. We pass from a portentous Brobdingnagia to a still more portentous Lilliputia. It has been ascertained that the mass of the electron is the 1/1700th part of that of an atom of hydrogen, of which, as we saw, billions of molecules have ample space to execute their terrific movements within the limits of the letter "o." It has been further shown that these electrons are identical, from whatever source they are obtained. The physicist therefore concludes—warning us that on this further point he is drawing a theoretical conclusion—that the atoms of ordinary matter are made up of electrons. If that is the case, the hydrogen atom, the lightest of all, must be a complex system of some 1700 electrons, and as we ascend the scale of atomic weight the clusters grow larger and larger, until we come to the atoms of the heavier metals with more than 250,000 electrons in each atom.

But this is not the most surprising part of the discovery. Tiny as the dimensions of the atom are, they afford a vast space for the movement of these energetic little bodies. The speed of the stars in their courses is slow compared with the flight of the electrons. Since they fly out of the system, in the conditions we have described, at a speed of between 90,000 and 100,000 miles a second, they must be revolving with terrific rapidity within it. Indeed, the most extraordinary discovery of all is that of the energy imprisoned within these tiny systems, which men have for ages regarded as "dead" matter. Sir J. J. Thomson calculates that, allowing only one electron to each atom in a gramme of hydrogen, the tiny globule of gas will contain as much energy as would be obtained by burning thirty-five tons of coal. If, he says, an appreciable fraction of the energy that is contained in ordinary matter were to be set free, the earth would explode and return to its primitive nebulous condition. Mr. Fournier d'Albe tells us that the force with which electrons repel each other is a quadrillion times greater than the force of gravitation that brings atoms together; and that if two grammes of pure electrons could be placed one centimetre apart they would repel each other with a force equal to 320 quadrillion tons. The inexpert imagination reels, but it must be remembered that the speed of the electron is a measured quantity, and it is within the resources of science to estimate the force necessary to project it at that speed.[1]

Such are the discoveries of the last fifteen years and a few of the mathematical deductions from them. We are not yet in a position to say positively that the atoms are composed of electrons, but it is clear that the experts are properly modest in claiming only that this is highly probable. The atom seems to be a little universe in which, in combination with positive electricity (the nature of which is still extremely obscure), from 1700 to 300,000 electrons revolve at a speed that reaches as high as 100,000 miles a second. Instead of being crowded together, however, in their minute system, each of them has, in proportion to its size, as ample a space to move in as a single speck of dust would have in a moderate-sized room (Thomson). This theory not only meets all the facts that have been discovered in an industrious decade of research, not only offers a splendid prospect of introducing unity into the eighty-one different elements of the chemist, but it opens out a still larger prospect of bringing a common measure into the diverse forces of the universe.

Light is already generally recognised as a rapid series of electro-magnetic waves or pulses in ether. Magnetism becomes intelligible as a condition of a body in which the electrons revolve round the atom in nearly the same plane. The difference between positive and negative electricity is at least partly illuminated. An atom will repel an atom when its equilibrium is disturbed by the approach of an additional electron; the physicist even follows the movement of the added electron, and describes it revolving 2200 billion times a second round the atom, to escape being absorbed in it. The difference between good and bad conductors of electricity becomes intelligible. The atoms of metals are so close together that the roaming electrons pass freely from one atom to another, in copper, it is calculated, the electron combines with an atom and is liberated again a hundred million times a second. Even chemical action enters the sphere of explanation.

However these hypotheses may fare, the electron is a fact, and the atom is very probably a more or less stable cluster of electrons. But when we go further, and attempt to trace the evolution of the electron out of ether, we enter a region of pure theory. Some of the experts conceive the electron as a minute whirlpool or vortex in the ocean of ether; some hold that it is a centre of strain in ether; some regard ether as a densely packed mass of infinitely small grains, and think that the positive and negative corpuscles, as they seem to us, are tiny areas in which the granules are unequally distributed. Each theory has its difficulties. We do not know the origin of the electron, because we do not know the nature of ether. To some it is an elastic solid, quivering in waves at every movement of the particles; to others it is a continuous fluid, every cubic millimetre of which possesses "an energy equivalent to the output of a million-horse-power station for 40,000,000 years" (Lodge); to others it is a close-packed granular mass with a pressure of 10,000 tons per square centimetre. We must wait. It is little over ten years since the vaults were opened and physicists began to peer into the sub-material world. The lower, perhaps lowest, depth is reserved for another generation.

But it may be said that the research of the last ten years has given us a glimpse of the foundations of the universe. Every theory of the electron assumes it to be some sort of nodule or disturbed area in the ether. It is sometimes described as "a particle of negative electricity" and associated with "a particle of positive electricity" in building up the atom. The phrase is misleading for those who regard electricity as a force or energy, and it gives rise to speculation as to whether "matter" has not been resolved into "force." Force or energy is not conceived by physicists as a substantial reality, like matter, but an abstract expression of certain relations of matter or electrons.

In any case, the ether, whether solid or fluid or granular, remains the fundamental reality. The universe does not float in an ocean of ether: it is an ocean of ether. But countless myriads of minute disturbances are found in this ocean, and set it quivering with the various pulses which we classify as forces or energies. These points of disturbance cluster together in systems (atoms) of from 1000 to 250,000 members, and the atoms are pressed together until they come in the end to form massive worlds. It remains only to reduce gravitation itself, which brings the atoms together, to a strain or stress in ether, and we have a superb unity. That has not yet been done, but every theory of gravitation assumes that it is a stress in the ether corresponding to the formation of the minute disturbances which we call electrons.

But, it may be urged, he who speaks of foundations speaks of a beginning of a structure; he who speaks of evolution must have a starting-point. Was there a time when the ether was a smooth, continuous fluid, without electrons or atoms, and did they gradually appear in it, like crystals in the mother-lye? In science we know nothing of a beginning. The question of the eternity or non-eternity of matter (or ether) is as futile as the question about its infinity or finiteness. We shall see in the next chapter that science can trace the processes of nature back for hundreds, if not thousands, of millions of years, and has ground to think that the universe then presented much the same aspect as it does now, and will in thousands of millions of years to come. But if these periods were quadrillions, instead of millions, of years, they would still have no relation to the idea of eternity. All that we can say is that we find nothing in nature that points to a beginning or an end.[2]

One point only need be mentioned in conclusion. Do we anywhere perceive the evolution of the material elements out of electrons, just as we perceive the devolution, or disintegration, of atoms into electrons? There is good ground for thinking that we do. The subject will be discussed more fully in the next chapter. In brief, the spectroscope, which examines the light of distant stars and discovers what chemical elements emitted it, finds matter, in the hottest stars, in an unusual condition, and seems to show the elements successively emerging from their fierce alchemy. Sir J. Norman Lockyer has for many years conducted a special investigation of the subject at the Solar Physics Observatory, and he declares that we can trace the evolution of the elements out of the fiery chaos of the young star. The lightest gases emerge first, the metals later, and in a special form. But here we pass once more from Lilliputia to Brobdingnagia, and must first explain the making of the star itself.


  1. See Sir J. J. Thomson, "The Corpuscular Theory of Matter" (1907) and—for a more elementary presentment—"Light Visible and Invisible" (1911); and Mr. Fournier d'Albe, "The Electron Theory" (2nd. ed., 1907).
  2. A theory has been advanced by some physicists that there is evidence of a beginning. Within our experience energy is being converted into heat more abundantly than heat is being converted into other energy. This would hold out a prospect of a paralysed universe, and that stage would have been reached long ago if the system had not had a definite beginning. But what knowledge have we of conversions of energy in remote regions of space, in the depths of stars or nebulae, or in the sub-material world of which we have just caught a glimpse? Roundly, none. The speculation is worthless.