Jump to content

The Variation of Animals and Plants under Domestication/XXVI

From Wikisource

CHAPTER XXVI.

LAWS OF VARIATION, continued—SUMMARY.

ON THE AFFINITY AND COHESION OF HOMOLOGOUS PARTSON THE VARIABILITY OF MULTIPLE AND HOMOLOGOUS PARTSCOMPENSATION OF GROWTHMECHANICAL PRESSURERELATIVE POSITION OF FLOWERS WITH RESPECT TO THE AXIS OF THE PLANT, AND OF SEEDS IN THE CAPSULE, AS INDUCING VARIATIONANALOGOUS OR PARALLEL VARIETIESSUMMARY OF THE THREE LAST CHAPTERS.

On the Affinity of Homologous Parts.—This law was first generalised by Geoffroy Saint Hilaire, under the expression of La loi de l'affinité de soi pour soi. It has been fully discussed and illustrated by his son, Isidore Geoffroy, with respect to monsters in the animal kingdom,[1] and by Moquin-Tandon, with respect to monstrous plants. When similar or homologous parts, whether belonging to the same embryo or to two distinct embryos, are brought during an early stage of development into contact, they often blend into a single part or organ; and this complete fusion indicates some mutual affinity between the parts, otherwise they would simply cohere. Whether any power exists which tends to bring homologous parts into contact seems more doubtful. The tendency to complete fusion is not a rare or exceptional fact. It is exhibited in the most striking manner by double monsters. Nothing can be more extraordinary than the manner, as shown in various published plates, in which the corresponding parts of two embryos become intimately fused together. This is perhaps best seen in monsters with two heads, which are united, summit to summit, or face to face, or, Janus-like, back to back, or obliquely side to side. In one instance of two heads united almost face to face, but a little obliquely, four ears were developed, and on one side a perfect face, which was manifestly formed by the union of two half-faces. Whenever two bodies or two heads are united, each bone, muscle, vessel, and nerve on the line of junction seems to seek out its fellow, and becomes completely fused with it. Lereboullet,[2] who carefully studied the development of double monsters in fishes, observed in fifteen instances the steps by which two heads gradually became fused into one. In this and other such cases, no one, I presume, supposes that the two already formed heads actually blend together, but that the corresponding parts of each head grow into one during the further progress of development, accompanied as it always is with incessant absorption and renovation. Double monsters were formerly thought to be formed by the union of two originally distinct embryos developed upon distinct vitelli; but now it is admitted that "their production is due to the spontaneous divarication of the embryonic mass into two halves;"[3] this, however, is effected by different methods. But the belief that double monsters originate from the division of one germ, does not necessarily affect the question of subsequent fusion, or render less true the law of the affinity of homologous parts.

The cautious and sagacious J. Müller,[4] when speaking of Janus-like monsters, says, that "without the supposition that some kind of affinity or attraction is exerted between corresponding parts, unions of this kind are inexplicable." On the other hand, Vrolik, and he is followed by others, disputes this conclusion, and argues from the existence of a whole series of monstrosities, graduating from a perfectly double monster to a mere rudiment of an additional digit, that "an excess of formative power" is the cause and origin of every monstrous duplicity. That there are two distinct classes of cases, and that parts may be doubled independently of the existence of two embryos, is certain; for a single embryo, or even a single adult animal, may produce doubled organs. Thus Valentin, as quoted by Vrolik, injured the caudal extremity of an embryo, and three days afterwards it produced rudiments of a double pelvis and of double hind limbs. Hunter and others have observed lizards with their tails reproduced and doubled. When Bonnet divided longitudinally the foot of the salamander, several additional digits were occasionally formed. But neither these cases, nor the perfect series from a double monster to an additional digit, seem to me opposed to the belief that corresponding parts have a mutual affinity, and consequently tend to fuse together. A part may be doubled and remain in this state, or the two parts thus formed may afterwards through the law of affinity become blended; or two homologous parts in two separate embryos may, through the same principle, unite and form a single part.

The law of the affinity and fusion of similar parts applies to the homologous organs of the same individual animal, as well as to double monsters. Isidore Geoffroy gives a number of instances of two or more digits, of two whole legs, of two kidneys, and of several teeth becoming symmetrically fused together in a more or less perfect manner. Even the two eyes have been known to unite into a single eye, forming a cyclopean monster, as have the two ears, though naturally standing so far apart. As Geoffroy remarks, these facts illustrate in an admirable manner the normal fusion of various organs which during an early embryonic period are double, but which afterwards always unite into a single median organ. Organs of this nature are generally found in a permanently double condition in other members of the same class. These cases of normal fusion appear to me to afford the strongest support in favour of the present law. Adjoining parts which are not homologous sometimes cohere; but this cohesion appears to result from mere juxtaposition, and not from mutual affinity.

In the vegetable kingdom Moquin-Tandon[5] gives a long list of cases, showing how frequently homologous parts, such as leaves, petals, stamens, and pistils, as well as aggregates of homologous parts, such as buds, flowers, and fruit, become blended into each other with perfect symmetry. It is interesting to examine a compound flower of this nature, formed of exactly double the proper number of sepals, petals, stamens, and pistils, with each whorl of organs circular, and with no trace left of the process of fusion. The tendency in homologous parts to unite during their early development, Moquin-Tandon considers as one of the most striking laws governing the production of monsters. It apparently explains a multitude of cases, both in the animal and vegetable kingdoms; it throws a clear light on many normal structures which have evidently been formed by the union of originally distinct parts, and it possesses, as we shall see in a future chapter, much theoretical interest.

 

On the Variability of Multiple and Homologous Parts.—Isidore Geoffroy[6] insists that, when any part or organ is repeated many times in the same animal, it is particularly liable to vary both in number and structure. With respect to number, the proposition may, I think, be considered as fully established; but the evidence is chiefly derived from organic beings living under their natural conditions, with which we are not here concerned. When the vertebræ, or teeth, or rays in the fins of fishes, or feathers in the tails of birds, or petals, stamens, pistils, and seeds in plants, are very numerous, the number is generally variable. The explanation of this simple fact is by no means obvious. With respect to the variability in structure of multiple parts, the evidence is not so decisive; but the fact, as far as it may be trusted, probably depends on multiple parts being of less physiological importance than single parts; consequently their perfect standard of structure has been less rigorously enforced by natural selection.

 

Compensation of Growth, or Balancement.—This law, as applied to natural species, was propounded by Goethe and Geoffroy St. Hilaire at nearly the same time. It implies that, when much organised matter is used in building up some one part, other parts are starved and become reduced. Several authors, especially botanists, believe in this law; others reject it. As far as I can judge, it occasionally holds good; but its importance has probably been exaggerated. It is scarcely possible to distinguish between the supposed effects of such compensation of growth, and the effects of long-continued selection, which may at the same time lead to the augmentation of one part and the diminution of another. There can be no doubt that an organ may be greatly increased without any corresponding diminution in the adjoining parts. To recur to our former illustration of the Irish elk, it may be asked what part has suffered in consequence of the immense development of the horns?

It has already been observed that the struggle for existence does not bear hard on our domesticated productions; consequently the principle of economy of growth will seldom affect them, and we ought not to expect to find frequent evidence of compensation. We have, however, some such cases. Moquin-Tandon describes a monstrous bean,[7] in which the stipules were enormously developed, and the leaflets apparently in consequence completely aborted; this case is interesting, as it represents the natural condition of Lathyrus aphaca, with its stipules of great size, and its leaves reduced to mere threads, which act as tendrils. De Candolle[8] has remarked that the varieties of Raphanus sativus which have small roots yield numerous seed, valuable from containing oil, whilst those with large roots are not productive in this latter respect; and so it is with Brassica asperifolia. The varieties of the potato which produce tubers very early in the season rarely bear flowers; but Andrew Knight,[9] by checking the growth of the tubers, forced the plants to flower. The varieties of Cucurbita pepo which produce large fruit yield, according to Naudin, few in number; whilst those producing small fruit yield a vast number. Lastly, I have endeavoured to show in the eighteenth chapter that with many cultivated plants unnatural treatment checks the full and proper action of the reproductive organs, and they are thus rendered more or less sterile; consequently, in the way of compensation, the fruit becomes greatly enlarged, and, in double flowers, the petals are greatly increased in number.

With animals, it has been found difficult to produce cows which should first yield much milk, and afterwards be capable of fattening well. With fowls which have large topknots and beards the comb and wattles are generally much reduced in size. Perhaps the entire absence of the oil-gland in fantail pigeons may be connected with the great development of their tails.

 

Mechanical Pressure as a Cause of Modifications.—In some few cases there is reason to believe that mere mechanical pressure has affected certain structures. Every one knows that savages alter the shape of their infants' skulls by pressure at an early age; but there is no reason to believe that the result is ever inherited. Nevertheless Vrolik and Weber[10] maintain that the shape of the human head is influenced by the shape of the mother's pelvis. The kidneys in different birds differ much in form, and St. Ange[11] believes that this is determined by the form of the pelvis, which again, no doubt, stands in close relation with their various habits of locomotion. In snakes, the viscera are curiously displaced, in comparison with their position in other vertebrates; and this has been attributed by some authors to the elongation of their bodies; but here, as in so many previous cases, it is impossible to disentangle any direct result of this kind from that consequent on natural selection. Godron has argued[12] that the normal abortion of the spur on the inner side of the flower in Corydalis, is caused by the buds being closely pressed at a very early period of growth, whilst under ground, against each other and against the stem. Some botanists believe that the singular difference in the shape both of the seed and corolla, in the interior and exterior florets in certain compositous and umbelliferous plants, is due to the pressure to which the inner florets are subjected; but this conclusion is doubtful.

The facts just given do not relate to domesticated productions, and therefore do not strictly concern us. But here is a more appropriate case: H. Müller[13] has shown that in short-faced races of the dog some of the molar teeth are placed in a slightly different position from that which they occupy in other dogs, especially in those having elongated muzzles; and as he remarks, any inherited change in the arrangement of the teeth deserves notice, considering their classificatory importance. This difference in position is due to the shortening of certain facial bones, and the consequent want of space; and the shortening results from a peculiar and abnormal state of the basal cartilages of the bones.

Relative Position of Flowers with respect to the Axis, and of Seeds in the Capsule, as inducing Variation.
In the thirteenth chapter various peloric flowers were described, and their production was shown to be due either to arrested development, or to reversion to a primordial condition. Moquin-Tandon has remarked that the flowers which stand on the summit of the main stem or of a lateral branch are more liable to become peloric than those on the sides;[14] and he adduces, amongst other instances, that of Teucrium campanulatum. In another Labiate plant grown by me, viz. the Galeobdolon luteum, the peloric flowers were always produced on the summit of the stem, where flowers are not usually borne. In Pelargonium, a single flower in the truss is frequently peloric, and when this occurs I have during several years invariably observed it to be the central flower. This is of such frequent occurrence that one observer[15] gives the names of ten varieties flowering at the same time, in every one of which the central flower was peloric. Occasionally more than one flower in the truss is peloric, and then of course the additional ones must be lateral. These flowers are interesting as showing how the whole structure is correlated. In the common Pelargonium the upper sepal is produced into a nectary which coheres with the flower-peduncle; the two upper petals differ a little in shape from the three lower ones, and are marked with dark shades of colour; the stamens are graduated in length and upturned. In the peloric flowers, the nectary aborts; all the petals become alike both in shape and colour; the stamens are generally reduced in number and become straight, so that the whole flower resembles that of the allied genus Erodium. The correlation between these changes is well shown when one of the two upper petals alone loses its dark mark, for in this case the nectary does not entirely abort, but is usually much reduced in length.[16]
Morren has described[17] a marvellous flask-shaped flower of the Calceolaria, nearly four inches in length, which was almost completely peloric; it grew on the summit of the plant, with a normal flower on each side; Prof. Westwood also has described[18] three similar peloric flowers, which all occupied a central position on the flower-branches. In the Orchideous genus, Phalænopsis, the terminal flower has been seen to become peloric.
In a Laburnum-tree I observed that about a fourth part of the racemes produced terminal flowers which had lost their papilionaceous structure. These were produced after almost all the other flowers on the same racemes had withered. The most perfectly pelorised examples had six petals, each marked with black striæ like those on the standard-petal. The keel seemed to resist the change more than the other petals. Dutrochet has described[19] an exactly similar case in France, and I believe these are the only two instances of pelorism in the laburnum which have been recorded. Dutrochet remarks that the racemes on this tree do not properly produce a terminal flower, so that, as in the case of the Galeobdolon, their position as well as their structure are both anomalies, which no doubt are in some manner related. Dr. Masters has briefly described another leguminous plant,[20] namely, a species of clover, in which the uppermost and central flowers were regular or had lost their papilionaceous structure. In some of these plants the flower-heads were also proliferous.
Lastly, Linaria produces two kinds of peloric flowers, one having simple petals, and the other having them all spurred. The two forms, as Naudin remarks,[21] not rarely occur on the same plant, but in this case the spurred form almost invariably stands on the summit of the spike.
The tendency in the terminal or central flower to become peloric more frequently than other flowers, probably results from "the bud which stands on the end of a shoot receiving the most sap; it grows out into a stronger shoot than those situated lower down."[22] I have discussed the connection between pelorism and a central position, partly because some few plants are known normally to produce a terminal flower different in structure from the lateral ones; but chiefly on account of the following case, in which we see a tendency to variability or to reversion connected with the same position. A great judge of Auriculas[23] states that when an Auricula throws up a side bloom it is pretty sure to keep its character; but that if it grows from the centre or heart of the plant, whatever the colour of the edging ought to be, "it is just as likely to come in any other class as in the one to which it properly belongs." This is so notorious a fact, that some florists regularly pinch off the central trusses of flowers. Whether in the highly improved varieties the departure of the central trusses from their proper type is due to reversion, I do not know. Mr. Dombrain insists that, whatever may be the commonest kind of imperfection in each variety, this is generally exaggerated in the central truss. Thus one variety "sometimes has the fault of producing a little green floret in the centre of the flower," and in central blooms these become excessive in size. In some central blooms, sent to me by Mr. Dombrain, all the organs of the flower were rudimentary in structure, of minute size, and of a green colour, so that by a little further change all would have been converted into small leaves. In this case we clearly see a tendency to prolification—a term which, I may explain to those who have never attended to botany, means the production of a branch or flower, or head of flowers, out of another flower. Now Dr. Masters[24] states that the central or uppermost flower on a plant is generally the most liable to prolification. Thus, in the varieties of the Auricula, the loss of their proper character and a tendency to prolification, and in other plants a tendency to prolification and pelorism, are all connected together, and are due either to arrested development, or to reversion to a former condition.
The following is a more interesting case; Metzger[25] cultivated in Germany several kinds of maize brought from the hotter parts of America, and he found, as has been previously described, that in two or three generations the grains became greatly changed in form, size, and colour; and with respect to two races he expressly states that in the first generation, whilst the lower grains on each head retained their proper character, the uppermost grains already began to assume that character which in the third generation all the grains acquired. As we do not know the aboriginal parent of the maize, we cannot tell whether these changes are in any way connected with reversion.
In the two following cases, reversion, as influenced by the position of the seed in the capsule, evidently acts. The Blue Imperial pea is the offspring of the Blue Prussian, and has larger seed and broader pods than its parent. Now Mr. Masters, of Canterbury, a careful observer and a raiser of new varieties of the pea, states[26] that the Blue Imperial always has a strong tendency to revert to its parent-stock, and the reversion "occurs in this manner: the last (or uppermost) pea in the pod is frequently much smaller than the rest; and if these small peas are carefully collected and sown separately, very many more, in proportion, will revert to their origin, than those taken from the other parts of the pod." Again M. Chaté[27] says that in raising seedling stocks he succeeds in getting eighty per cent. to bear double flowers, by leaving only a few of the secondary branches to seed; but in addition to this, "at the time of extracting the seeds, the upper portion of the pod is separated and placed aside, because it has been ascertained that the plants coming from the seeds situated in this portion of the pod, give eighty per cent. of single flowers." Now the production of single-flowering plants from the seed of double-flowering plants is clearly a case of reversion. These latter facts, as well as the connection between a central position and pelorism and prolification, show in an interesting manner how small a difference—namely a little greater freedom in the flow of sap towards one part of the same plant—determines important changes of structure.

 

Analogous or Parallel Variation.—By this term I wish to express that similar characters occasionally make their appearance in the several varieties or races descended from the same species, and more rarely in the offspring of widely distinct species. We are here concerned, not as hitherto with the causes of variation, but with the results; but this discussion could not have been more conveniently introduced elsewhere. The cases of analogous variation, as far as their origin is concerned, may be grouped, disregarding minor subdivisions, under two main heads; firstly, those due to unknown causes having acted on organic beings with nearly the same constitution, and which consequently vary in an analogous manner; and secondly, those due to the reappearance of characters which were possessed by a more or less remote progenitor. But these two main divisions can often be only conjecturally separated, and graduate, as we shall presently see, into each other.

Under the first head of analogous variations, not due to reversion, we have the many cases of trees belonging to quite different orders which have produced pendulous and fastigate varieties. The beech, hazel, and barberry have given rise to purple-leaved varieties; and as Bernhardi has remarked,[28] a multitude of plants, as distinct as possible, have yielded varieties with deeply-cut or laciniated leaves. Varieties descended from three distinct species of Brassica have their stems, or so-called roots, enlarged into globular masses. The nectarine is the offspring of the peach; and the varieties of both these trees offer a remarkable parallelism in the fruit being white, red, or yellow fleshed—in being clingstones or freestones—in the flowers being large or small—in the leaves being serrated or crenated, furnished with globose or reniform glands, or quite destitute of glands. It should be remarked that each variety of the nectarine has not derived its character from a corresponding variety of the peach. The several varieties also of a closely allied genus, namely the apricot, differ from each other in nearly the same parallel manner. There is no reason to believe that in any of these cases long-lost characters have reappeared, and in most of them this certainly has not occurred.
Three species of Cucurbita have yielded a multitude of races, which correspond so closely in character that, as Naudin insists, they may be arranged in an almost strictly parallel series. Several varieties of the melon are interesting from resembling in important characters other species, either of the same genus or of allied genera; thus, one variety has fruit so like, both externally and internally, the fruit of a perfectly distinct species, namely, the cucumber, as hardly to be distinguished from it; another has long cylindrical fruit twisting about like a serpent; in another the seeds adhere to portions of the pulp; in another the fruit, when ripe, suddenly cracks and falls into pieces; and all these highly remarkable peculiarities are characteristic of species belonging to allied genera. We can hardly account for the appearance of so many unusual characters by reversion to a single ancient form; but we must believe that all the members of the family have inherited a nearly similar constitution from an early progenitor. Our cereal and many other plants offer similar cases.
With animals we have fewer cases of analogous variation, independently of direct reversion. We see something of the kind in the resemblance between the short-muzzled races of the dog, such as the pug and bulldog; in feather-footed races of the fowl, pigeon, and canary-bird; in horses of the most different races presenting the same range of colour; in all black-and-tan dogs having tan-coloured eye-spots and feet, but in this latter case reversion may possibly have played a part. Low has remarked[29] that several breeds of cattle are "sheeted,"—that is, have a broad band of white passing round their bodies like a sheet; this character is strongly inherited and sometimes originates from a cross; it may be the first step in reversion to an original or early type, for, as was shown in the third chapter, white cattle with dark ears, feet, and tip of tail formerly existed, and now exist in a feral or semi-feral condition in several quarters of the world.
Under our second main division, namely, of analogous variations due to reversion, the best cases are afforded by animals, and by none better than by pigeons. In all the most distinct breeds sub-varieties occasionally appear coloured exactly like the parent rock-pigeon, with black wing-bars, white loins, banded tail, &c.; and no one can doubt that these characters are simply due to reversion. So with minor details; turbits properly have white tails, but occasionally a bird is born with a dark-coloured and banded tail; pouters properly have white primary wing-feathers, but not rarely a "sword-flighted" bird, that is, one with the few first primaries dark-coloured, appears; and in these cases we have characters proper to the rock-pigeon, but new to the breed, evidently appearing from reversion. In some domestic varieties the wing-bars, instead of being simply black, as in the rock-pigeon, are beautifully edged with different zones of colour, and they then present a striking analogy with the wing-bars in certain natural species of the same family, such as Phaps chalcoptera; and this may probably be accounted for by all the forms descended from the same remote progenitor having a tendency to vary in the same manner. Thus also we can perhaps understand the fact of some Laugher-pigeons cooing almost like turtle-doves, and of several races having peculiarities in their flight, for certain natural species (viz. C. torquatrix and palumbus) display singular vagaries in this respect. In other cases a race, instead of imitating in character a distinct species, resembles some other race; thus certain runts tremble and slightly elevate their tails, like fantails; and turbits inflate the upper part of their œsophagus, like pouter-pigeons.
It is a common circumstance to find certain coloured marks persistently characterising all the species of a genus, but differing much in tint; and the same thing occurs with the varieties of the pigeon: thus, instead of the general plumage being blue with the wing-bars black, there are snow-white varieties with red bars, and black varieties with white bars; in other varieties the wing-bars, as we have seen, are elegantly zoned with different tints. The Spot pigeon is characterised by the whole plumage being white, excepting the tail and a spot on the forehead; but these parts may be red, yellow, or black. In the rock-pigeon and in many varieties the tail is blue, with the outer edges of the outer feathers white; but in one sub-variety of the monk-pigeon we have a reversed variation, for the tail is white, except the outer edges of the outer feathers, which are black.[30]
With some species of birds, for instance with gulls, certain coloured parts appear as if almost washed out, and I have observed exactly the same appearance in the terminal dark tail-bar in certain pigeons, and in the whole plumage of certain varieties of the duck. Analogous facts in the vegetable kingdom could be given.
Many sub-varieties of the pigeon have reversed and somewhat lengthened feathers on the back part of their heads, and this is certainly not due to reversion to the parent-species, which shows no trace of such structure; but when we remember that sub-varieties of the fowl, turkey, canary-bird, duck, and goose, all have topknots or reversed feathers on their heads; and when we remember that scarcely a single large natural group of birds can be named, in which some members have not a tuft of feathers on their heads, we may suspect that reversion to some extremely remote form has come into action.
Several breeds of the fowl have either spangled or pencilled feathers; and these cannot be derived from the parent-species, the Gallus bankiva; though of course it is possible that an early progenitor of this species may have been spangled, and a still earlier or a later progenitor may have been pencilled. But as many gallinaceous birds are spangled or pencilled, it is a more probable view that the several domestic breeds of the fowl have acquired this kind of plumage from all the members of the family inheriting a tendency to vary in a like manner. The same principle may account for the ewes in certain breeds of sheep being hornless, like the females of some other hollow-horned ruminants; it may account for certain domestic cats having slightly-tufted ears, like those of the lynx; and for the skulls of domestic rabbits often differing from each other in the same characters by which the skulls of the various species of the genus Lepus differ.
I will only allude to one other case, already discussed. Now that we know that the wild parent of the ass has striped legs, we may feel confident that the occasional appearance of stripes on the legs of the domestic ass is due to direct reversion; but this will not account for the lower end of the shoulder-stripe being sometimes angularly bent or slightly forked. So, again, when we see dun and other coloured horses with stripes on the spine, shoulders, and legs, we are led, from reasons formerly given, to believe that they reappear from direct reversion to the wild parent-horse. But when horses have two or three shoulder-stripes with one of them occasionally forked at the lower end, or when they have stripes on their faces, or as foals are faintly striped over nearly their whole bodies, with the stripes angularly bent one under the other on the forehead, or irregularly branched in other parts, it would be rash to attribute such diversified characters to the reappearance of those proper to the aboriginal wild horse. As three African species of the genus are much striped, and as we have seen that the crossing of the unstriped species often leads to the hybrid offspring being conspicuously striped—bearing also in mind that the act of crossing certainly causes the reappearance of long-lost characters—it is a more probable view that the above-specified stripes are due to reversion, not to the immediate wild parent-horse, but to the striped progenitor of the whole genus.

I have discussed this subject of analogous variation at considerable length, because, in a future work on natural species, it will be shown that the varieties of one species frequently mock distinct species—a fact in perfect harmony with the foregoing cases, and explicable only on the theory of descent. Secondly, because these facts are important from showing, as remarked in a former chapter, that each trifling variation is governed by law, and is determined in a much higher degree by the nature of the organisation, than by the nature of the conditions to which the varying being has been exposed. Thirdly, because these facts are to a certain extent related to a more general law, namely, that which Mr. B. D. Walsh[31] has called the "Law of Equable Variability," or, as he explains it, "if any given character is very variable in one species of a group, it will tend to be variable in allied species; and if any given character is perfectly constant in one species of a group, it will tend to be constant in allied species."

This leads me to recall a discussion in the chapter on Selection, in which it was shown that with domestic races, which are now undergoing rapid improvement, those parts or characters which are the most valued vary the most. This naturally follows from recently selected characters continually tending to revert to their former less improved standard, and from their being still acted on by the same agencies, whatever these may be, which first caused the characters in question to vary. The same principle is applicable to natural species, for, as stated in my 'Origin of Species,' generic characters are less variable than specific characters; and the latter are those which have been modified by variation and natural selection, since the period when all the species belonging to the same genus branched off from a common progenitor, whilst generic characters are those which have remained unaltered from a much more remote epoch, and accordingly are now less variable. This statement makes a near approach to Mr. Walsh's law of Equable Variability. Secondary sexual characters, it may be added, rarely serve to characterise distinct genera, for they usually differ much in the species of the same genus, and are highly variable in the individuals of the same species; we have also seen in the earlier chapters of this work how variable secondary sexual characters become under domestication.

Summary of the three previous Chapters, on the Laws of Variation.

In the twenty-third chapter we have seen that changed conditions occasionally act in a definite manner on the organisation, so that all, or nearly all, the individuals thus exposed become modified in the same manner. But a far more frequent result of changed conditions, whether acting directly on the organisation or indirectly through the reproductive system being affected is indefinite and fluctuating variability. In the three latter chapters we have endeavoured to trace some of the laws by which such variability is regulated.

Increased use adds the size of a muscle, together with the blood-vessels, nerves, ligaments, the crests of bone to which these are attached, the whole bone and other connected bones. So it is with various glands. Increased functional activity strengthens the sense-organs. Increased and intermittent pressure thickens the epidermis; and a change in the nature of the food sometimes modifies the coats of the stomach, and increases or decreases the length of the intestines. Continued disuse, on the other hand, weakens and diminishes all parts of the organisation. Animals which during many generations have taken but little exercise, have their lungs reduced in size, and as a consequence the bony fabric of the chest, and the whole form of the body, become modified. With our anciently domesticated birds, the wings have been little used, and they are slightly reduced; with their decrease, the crest of the sternum, the scapulæ, coracoids, and furcula, have all been reduced.

With domesticated animals, the reduction of a part from disuse is never carried so far that a mere rudiment is left, but we have good reason to believe that this has often occurred under nature. The cause of this difference probably is that with domestic animals not only sufficient time has not been granted for so profound a change, but that, from not being exposed to a severe struggle for life, the principle of the economy of organisation does not come into action. On the contrary, we sometimes see that structures which are rudimentary in the parent-species become partially redeveloped in their domesticated progeny. When rudiments are formed or left under domestication, they are the result of a sudden arrest of development, and not of long-continued disuse with the absorption of all superfluous parts; nevertheless they are of interest, as showing that rudiments are the relics of organs once perfectly developed.

Corporeal, periodical, and mental habits, though the latter have been almost passed over in this work, become changed under domestication, and the changes are often inherited. Such changed habits in any organic being, especially when living a free life, would often lead to the augmented or diminished use of various organs, and consequently to their modification. From long-continued habit, and more especially from the occasional birth of individuals with a slightly different constitution, domestic animals and cultivated plants become to a certain extent acclimatised, or adapted to a climate different from that proper to the parent-species.

Through the principle of correlated variability, when one part varies other parts vary,—either simultaneously, or one after the other. Thus an organ modified during an early embryonic period affects other parts subsequently developed. When an organ, such as the beak, increases or decreases in length, adjoining or correlated parts, as the tongue and the orifice of the nostrils, tend to vary in the same manner. When the whole body increases or decreases in size, various parts become modified; thus with pigeons the ribs increase or decrease in number and breadth. Homologous parts, which are identical during their early development and are exposed to similar conditions, tend to vary in the same or in some connected manner,—as in the case of the right and left sides of the body, of the front and hind limbs, and even of the head and limbs. So it is with the organs of sight and hearing; for instance, white cats with blue eyes are almost always deaf. There is a manifest relation throughout the body between the skin and its various appendages of hair, feathers, hoofs, horns, and teeth. In Paraguay, horses with curly hair have hoofs like those of a mule; the wool and the horns of sheep vary together; hairless dogs are deficient in their teeth; men with redundant hair have abnormal teeth, either deficient or in excess. Birds with long wing-feathers usually have long tail-feathers. When long feathers grow from the outside of the legs and toes of pigeons, the two outer toes are connected by membrane; for the whole leg tends to assume the structure of the wing. There is a manifest relation between a crest of feathers on the head and a marvellous amount of change in the skull of various fowls; and in a lesser degree, between the greatly elongated, lopping ears of rabbits and the structure of their skulls. With plants, the leaves, various parts of the flower, and the fruit, often vary together in a correlated manner.

In some cases we find correlation without being able even to conjecture what is the nature of the connexion, as with various correlated monstrosities and diseases. This is likewise the case with the colour of the adult pigeon, in connexion with the presence of down on the young bird. Numerous curious instances have been given of peculiarities of constitution, in correlation with colour, as shown by the immunity of individuals of some one colour from certain diseases, from the attacks of parasites, and from the action of certain vegetable poisons.

Correlation is an important subject; for with species, and in a lesser degree with domestic races, we continually find that certain parts have been greatly modified to serve some useful purpose; but we almost invariably find that other parts have likewise been more or less modified, without our being able to discover any advantage in the change. No doubt great caution is necessary in coming to this conclusion, for it is difficult to overrate our ignorance on the use of various parts of the organisation; but from what we have now seen, we may believe that many modifications are of no direct service, having arisen in correlation with other and useful changes.

Homologous parts during their early development evince an affinity for each other,—that is, they tend to cohere and fuse together much more readily than other parts. This tendency to fusion explains a multitude of normal structures. Multiple and homologous organs are especially liable to vary in number and probably in form. As the supply of organised matter is not unlimited, the principle of compensation sometimes comes into action; so that, when one part is greatly developed, adjoining parts or functions are apt to be reduced; but this principle is probably of much less importance than the more general one of the economy of growth. Through mere mechanical pressure hard parts occasionally affect soft adjoining parts. With plants the position of the flowers on the axis, and of the seeds in the capsule, sometimes leads, through a freer flow of sap, to changes of structure; but these changes are often due to reversion. Modifications, in whatever manner caused, will be to a certain extent regulated by that co-ordinating power or nisus formativus, which is in fact a remnant of one of the forms of reproduction, displayed by many lowly organised beings in their power of fissiparous generation and budding. Finally, the effects of the laws, which directly or indirectly govern variability, may be largely influenced by man's selection, and will so far be determined by natural selection that changes advantageous to any race will be favoured and disadvantageous changes checked.

Domestic races descended from the same species, or from two or more allied species, are liable to revert to characters derived from their common progenitor, and, as they have much in common in their constitutions, they are also liable under changed conditions to vary in the same manner; from these two causes analogous varieties often arise. When we reflect on the several foregoing laws, imperfectly as we understand them, and when we bear in mind how much remains to be discovered, we need not be surprised at the extremely intricate manner in which our domestic productions have varied, and still go on varying.


  1. 'Hist. des Anomalies,' 1832, tom. i. pp. 22, 537-556; tom. iii. p. 462.
  2. 'Comptes Rendus,' 1855, pp. 855, 1029.
  3. Carpenter's 'Comp. Phys.,' 1854, p. 480; see also Camille Dareste, 'Comptes Rendus,' March 20th, 1865, p. 562.
  4. 'Elements of Physiology,' Eng. translat, vol. i., 1838, p. 412. With respect to Vrolik, see Todd's 'Cyclop. of Anat. and Phys.,' vol. iv., 1849-52, p. 973.
  5. 'Tératologie Vég.,' 1841, livre iii.
  6. 'Hist. des Anomalies,' tom. iii. pp. 4, 5, 6.
  7. 'Tératologie Vég.,' p. 156. See also my paper on climbing plants in 'Journal of Linn. Soc. Bot.,' vol. ix., 1865, p. 114.
  8. 'Mémoires du Muséum,' &c., tom. viii. p. 178.
  9. Loudon's 'Encyclop. of Gardening,' p. 829.
  10. Prichard, 'Phys. Hist. of Mankind,' 1851, vol. i. p. 324.
  11. 'Annales des Sc. Nat.,' 1st series, tom. xix. p. 327.
  12. 'Comptes Rendus,' Dec. 1864, p. 1039.
  13. Ueber Fötale Rachites, 'Würzburger Medicin. Zeitschrift,' 1860, B. i. s. 265.
  14. 'Tératologie Vég.,' p. 192. Dr. M. Masters informs me that he doubts the truth of this conclusion; but the facts to be given seem to be sufficient to establish it.
  15. 'Journal of Horticulture,' July 2nd, 1861, p. 253.
  16. It would be worth trial to fertilise with the same pollen the central and lateral flowers of the pelargonium, and of some other highly cultivated plants, protecting them of course from insects: then to sow the seed separately, and observe whether the one or the other lot of seedlings varied the most.
  17. Quoted in 'Journal of Horticulture,' Feb. 24, 1863, p. 152.
  18. 'Gardener's Chronicle,' 1866, p. 612. For the Phalænopsis, see idem, 1867, p. 211.
  19. Mémoires ... des Végétaux,' 1837, tom. ii. p. 170.
  20. 'Journal of Horticulture,' July 23, 1861, p. 311.
  21. 'Nouvelles Archives du Muséum,' tom. i. p. 137.
  22. Hugo von Mohl, 'The Vegetable Cell,' Eng. tr., 1852, p. 76.
  23. The Rev. H. H. Dombrain, in 'Journal of Horticulture,' 1861, June 4th, p. 174; and June 25th, p. 234; 1862, April 29th, p. 83.
  24. 'Transact. Linn. Soc.,' vol. xxiii., 1861, p. 360.
  25. 'Die Getreidearten,' 1843, s. 208, 209.
  26. 'Gardener's Chronicle,' 1850, p. 198.
  27. Quoted in 'Gardener's Chron.,' 1866, p. 74.
  28. 'Ueber den Begriff der Pflanzenart,' 1834, s. 14.
  29. 'Domesticated Animals,' 1845, p. 351.
  30. Bechstein, 'Naturgeschichte Deutschlands,' Band iv., 1795, s. 31.
  31. 'Proc. Entomolog. Soc. of Philadelphia,' Oct. 1863, p. 213.