Elements of the Differential and Integral Calculus/Contents
CONTENTS DIFFERENTIAL CALCULUS
CHAPTER I
COLLECTION OF FORMULASSECTION PAGE 1. Formulas from Algebra, Trigonometry, and Analytic Geometry................................................................................................................................................................................................................................................................................................................................................................................................1 2. Greek alphabet................................................................................................................................................................................................................................................................................................................................................................................................3 3. Rules for signs in the four quadrants................................................................................................................................................................................................................................................................................................................................................................................................3 4. Natural values of the trigonometric functions................................................................................................................................................................................................................................................................................................................................................................................................4 5. Tables of logarithms................................................................................................................................................................................................................................................................................................................................................................................................5 CHAPTER II
VARIABLES AND FUNCTIONS6. Variables and constants................................................................................................................................................................................................................................................................................................................................................................................................6 7. Interval of a variable................................................................................................................................................................................................................................................................................................................................................................................................6 8. Continuous variation................................................................................................................................................................................................................................................................................................................................................................................................6 9. Functions................................................................................................................................................................................................................................................................................................................................................................................................7 10. Independent and dependent variables................................................................................................................................................................................................................................................................................................................................................................................................7 11. Notation of functions................................................................................................................................................................................................................................................................................................................................................................................................8 12. Values of the independent variable for which a function is defined................................................................................................................................................................................................................................................................................................................................................................................................8 CHAPTER III
THEORY OF LIMITS13. Limit of a variable................................................................................................................................................................................................................................................................................................................................................................................................11 14. Division by zero excluded................................................................................................................................................................................................................................................................................................................................................................................................12 15. Infinitesimals................................................................................................................................................................................................................................................................................................................................................................................................13 16. The concept of infinity ()................................................................................................................................................................................................................................................................................................................................................................................................13 17. Limiting value of a function................................................................................................................................................................................................................................................................................................................................................................................................14 18. Continuous and discontinuous functions................................................................................................................................................................................................................................................................................................................................................................................................14 19. Continuity and discontinuity of functions illustrated by their graphs................................................................................................................................................................................................................................................................................................................................................................................................16 20. Fundamental theorems on limits................................................................................................................................................................................................................................................................................................................................................................................................18 21. Special limiting values................................................................................................................................................................................................................................................................................................................................................................................................20 22. The limit of as................................................................................................................................................................................................................................................................................................................................................................................................21 23. The number................................................................................................................................................................................................................................................................................................................................................................................................22 24. Expressions assuming the form................................................................................................................................................................................................................................................................................................................................................................................................23
CHAPTER IV
DIFFERENTIATION
25. Introduction................................................................................................................................................................................................................................................................................................................................................................................................25 26. Increments................................................................................................................................................................................................................................................................................................................................................................................................25 27. Comparison of increments................................................................................................................................................................................................................................................................................................................................................................................................26 28. Derivative of a function of one variable................................................................................................................................................................................................................................................................................................................................................................................................27 29. Symbols for derivatives................................................................................................................................................................................................................................................................................................................................................................................................28 30. Differentiable functions................................................................................................................................................................................................................................................................................................................................................................................................29 31. General rule for differentiation................................................................................................................................................................................................................................................................................................................................................................................................29 32. Applications of the derivative to Geometry................................................................................................................................................................................................................................................................................................................................................................................................31 CHAPTER V
RULES FOR DIFFERENTIATING STANDARD ELEMENTARY FORMS33. Importance of General Rule................................................................................................................................................................................................................................................................................................................................................................................................34 34. Differentiation of a constant................................................................................................................................................................................................................................................................................................................................................................................................36 35. Differentiation of a variable with respect to itself................................................................................................................................................................................................................................................................................................................................................................................................37 36. Differentiation of a sum................................................................................................................................................................................................................................................................................................................................................................................................37 37. Differentiation of the product of a constant and a function................................................................................................................................................................................................................................................................................................................................................................................................37 38. Differentiation of the product of two functions................................................................................................................................................................................................................................................................................................................................................................................................38 39. Differentiation of the product of any finite number of functions................................................................................................................................................................................................................................................................................................................................................................................................38 40. Differentiation of a function with a constant exponent................................................................................................................................................................................................................................................................................................................................................................................................39 41. Differentiation of a quotient................................................................................................................................................................................................................................................................................................................................................................................................40 42. Differentiation of a function of a function................................................................................................................................................................................................................................................................................................................................................................................................44 43. Differentiation of inverse functions................................................................................................................................................................................................................................................................................................................................................................................................45 44. Differentiation of a logarithm................................................................................................................................................................................................................................................................................................................................................................................................46 45. Differentiation of the simple exponential function................................................................................................................................................................................................................................................................................................................................................................................................48 46. Differentiation of the general exponential function................................................................................................................................................................................................................................................................................................................................................................................................49 47. Logarithmic differentiation................................................................................................................................................................................................................................................................................................................................................................................................50 48. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................54 49. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................55 50. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................56 51. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................56 52. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................56 53. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................57 54. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................57 55. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................61 56. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................62 57. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................62 58. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................63 59. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................63 60. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................64
61. Differentiation of................................................................................................................................................................................................................................................................................................................................................................................................65 62. Implicit functions................................................................................................................................................................................................................................................................................................................................................................................................69 63. Differentiation of implicit functions................................................................................................................................................................................................................................................................................................................................................................................................69 CHAPTER VI
SIMPLE APPLICATIONS OF THE DERIVATIVE64. Direction of a curve................................................................................................................................................................................................................................................................................................................................................................................................73 65. Equations of tangent and normal, lengths of subtangent and subnormal. Rectangular coördinates................................................................................................................................................................................................................................................................................................................................................................................................76 66. Parametric equations of a curve................................................................................................................................................................................................................................................................................................................................................................................................79 67. Angle between the radius vector drawn to a point on a curve and the tangent to the curve at that point................................................................................................................................................................................................................................................................................................................................................................................................83 68. Lengths of polar subtangent and polar subnormal................................................................................................................................................................................................................................................................................................................................................................................................86 69. Solution of equations having multiple roots................................................................................................................................................................................................................................................................................................................................................................................................88 70. Applications of the derivative in mechanics. Velocity................................................................................................................................................................................................................................................................................................................................................................................................90 71. Component velocities................................................................................................................................................................................................................................................................................................................................................................................................91 72. Acceleration................................................................................................................................................................................................................................................................................................................................................................................................92 73. Component accelerations................................................................................................................................................................................................................................................................................................................................................................................................93 CHAPTER VII
SUCCESSIVE DIFFERENTIATION74. Definition of successive derivatives................................................................................................................................................................................................................................................................................................................................................................................................97 75. Notation................................................................................................................................................................................................................................................................................................................................................................................................97 76. The derivative................................................................................................................................................................................................................................................................................................................................................................................................98 77. Leibnitz's formula for the derivative of a product................................................................................................................................................................................................................................................................................................................................................................................................98 78. Successive differentiation of implicit functions................................................................................................................................................................................................................................................................................................................................................................................................100 CHAPTER VIII
MAXIMA AND MINIMA. POINTS OF INFLECTION. CURVE TRACING79. Introduction................................................................................................................................................................................................................................................................................................................................................................................................103 80. Increasing and decreasing functions................................................................................................................................................................................................................................................................................................................................................................................................106 81. Tests for determining when a function is increasing and when decreasing................................................................................................................................................................................................................................................................................................................................................................................................108 82. Maximum and minimum values of a function................................................................................................................................................................................................................................................................................................................................................................................................109 83. First method for examining a function for maximum and minimum values................................................................................................................................................................................................................................................................................................................................................................................................111 84. Second method for examining a function for maximum and minimum values................................................................................................................................................................................................................................................................................................................................................................................................112 85. Definition of points of inflection and rule for finding points of inflection................................................................................................................................................................................................................................................................................................................................................................................................125 86. Curve tracing................................................................................................................................................................................................................................................................................................................................................................................................128
CHAPTER IX
DIFFERENTIALS87. Introduction................................................................................................................................................................................................................................................................................................................................................................................................131 88. Definitions................................................................................................................................................................................................................................................................................................................................................................................................131 89. Infinitesimals................................................................................................................................................................................................................................................................................................................................................................................................132 90. Derivative of the arc in rectangular coördinates................................................................................................................................................................................................................................................................................................................................................................................................134 91. Derivative of the arc in polar coördinates................................................................................................................................................................................................................................................................................................................................................................................................135 92. Formulas for finding the differentials of functions................................................................................................................................................................................................................................................................................................................................................................................................137 93. Successive differentials................................................................................................................................................................................................................................................................................................................................................................................................139 CHAPTER X
RATES94. The derivative considered as the ratio of two rates................................................................................................................................................................................................................................................................................................................................................................................................141 CHAPTER XI
CHANGE OF VARIABLE95. Interchange of dependent and independent variables................................................................................................................................................................................................................................................................................................................................................................................................148 96. Change of the dependent variable................................................................................................................................................................................................................................................................................................................................................................................................149 97. Change of the independent variable................................................................................................................................................................................................................................................................................................................................................................................................150 98. Simultaneous change of both independent and dependent variables................................................................................................................................................................................................................................................................................................................................................................................................152 CHAPTER XII
CURVATURE. RADIUS OF CURVATURE99. Curvature................................................................................................................................................................................................................................................................................................................................................................................................155 100. Curvature of a circle................................................................................................................................................................................................................................................................................................................................................................................................155 101. Curvature at a point................................................................................................................................................................................................................................................................................................................................................................................................156 102. Formulas for curvature................................................................................................................................................................................................................................................................................................................................................................................................159 103. Radius of curvature................................................................................................................................................................................................................................................................................................................................................................................................159 104. Circle of curvature................................................................................................................................................................................................................................................................................................................................................................................................161 CHAPTER XIII
THEOREM OF MEAN VALUE. INDETERMINATE FORMS105. Rolle's Theorem................................................................................................................................................................................................................................................................................................................................................................................................164 106. The Theorem of Mean Value................................................................................................................................................................................................................................................................................................................................................................................................165 107. The Extended Theorem of Mean Value................................................................................................................................................................................................................................................................................................................................................................................................166
108. Maxima and minima treated analytically................................................................................................................................................................................................................................................................................................................................................................................................167 109. Indeterminate forms................................................................................................................................................................................................................................................................................................................................................................................................170 110. Evaluation of a function taking on an indeterminate form................................................................................................................................................................................................................................................................................................................................................................................................170 111. Evaluation of the indeterminate form................................................................................................................................................................................................................................................................................................................................................................................................171 112. Evaluation of the indeterminate form................................................................................................................................................................................................................................................................................................................................................................................................174 113. Evaluation of the indeterminate form................................................................................................................................................................................................................................................................................................................................................................................................174 114. Evaluation of the indeterminate form................................................................................................................................................................................................................................................................................................................................................................................................175 115. Evaluation of the indeterminate forms................................................................................................................................................................................................................................................................................................................................................................................................176 CHAPTER XIV
CIRCLE OF CURVATURE. CENTER OF CURVATURE116. Circle of curvature. Center of curvature................................................................................................................................................................................................................................................................................................................................................................................................178 117. Second method for finding center of curvature................................................................................................................................................................................................................................................................................................................................................................................................180 118. Center of curvature the limiting position of the intersection of normals at neighboring points................................................................................................................................................................................................................................................................................................................................................................................................181 119. Evolutes................................................................................................................................................................................................................................................................................................................................................................................................182 120. Properties of the evolute................................................................................................................................................................................................................................................................................................................................................................................................186 121. Involutes and their mechanical construction................................................................................................................................................................................................................................................................................................................................................................................................187 CHAPTER XV
PARTIAL DIFFERENTIATION122. Continuous functions of two or more independent variables................................................................................................................................................................................................................................................................................................................................................................................................190 123. Partial derivatives................................................................................................................................................................................................................................................................................................................................................................................................191 124. Partial derivatives interpreted geometrically................................................................................................................................................................................................................................................................................................................................................................................................192 125. Total derivatives................................................................................................................................................................................................................................................................................................................................................................................................194 126. Total differentials................................................................................................................................................................................................................................................................................................................................................................................................197 127. Differentiation of implicit functions................................................................................................................................................................................................................................................................................................................................................................................................198 128. Successive partial derivatives................................................................................................................................................................................................................................................................................................................................................................................................202 129. Order of differentiation immaterial................................................................................................................................................................................................................................................................................................................................................................................................203 CHAPTER XVI
ENVELOPES130. Family of curves. Variable parameter................................................................................................................................................................................................................................................................................................................................................................................................205 131. Envelope of a family of curves depending on one parameter................................................................................................................................................................................................................................................................................................................................................................................................205 132. The evolute of a given curve considered as the envelope of its normals................................................................................................................................................................................................................................................................................................................................................................................................208 133. Two parameters connected by one equation of condition................................................................................................................................................................................................................................................................................................................................................................................................209
CHAPTER XVII
SERIES134. Introduction................................................................................................................................................................................................................................................................................................................................................................................................212 135. Infinite series................................................................................................................................................................................................................................................................................................................................................................................................213 136. Existence of a limit................................................................................................................................................................................................................................................................................................................................................................................................215 137. Fundamental test for convergence................................................................................................................................................................................................................................................................................................................................................................................................216 138. Comparison test for convergence................................................................................................................................................................................................................................................................................................................................................................................................217 139. Cauchy's ratio test for convergence................................................................................................................................................................................................................................................................................................................................................................................................218 140. Alternating series................................................................................................................................................................................................................................................................................................................................................................................................220 141. Absolute convergence................................................................................................................................................................................................................................................................................................................................................................................................220 142. Power series................................................................................................................................................................................................................................................................................................................................................................................................223 CHAPTER XVIII
EXPANSION OF FUNCTIONS143. Introduction................................................................................................................................................................................................................................................................................................................................................................................................227 144. Taylor's Theorem and Taylor's Series................................................................................................................................................................................................................................................................................................................................................................................................228 145. Maclaurin's Theorem and Maclaurin's Series................................................................................................................................................................................................................................................................................................................................................................................................230 146. Computation by series................................................................................................................................................................................................................................................................................................................................................................................................234 147. Approximate formulas derived from series. Interpolation................................................................................................................................................................................................................................................................................................................................................................................................237 148. Taylor's Theorem for functions of two or more variables................................................................................................................................................................................................................................................................................................................................................................................................240 149. Maxima and minima of functions of two independent variables................................................................................................................................................................................................................................................................................................................................................................................................243 CHAPTER XIX
ASYMPTOTES. SINGULAR POINTS150. Rectilinear asymptotes................................................................................................................................................................................................................................................................................................................................................................................................249 151. Asymptotes found by method of limiting intercepts................................................................................................................................................................................................................................................................................................................................................................................................249 152. Method of determining asymptotes to algebraic curves................................................................................................................................................................................................................................................................................................................................................................................................250 153. Asymptotes in polar coördinates................................................................................................................................................................................................................................................................................................................................................................................................254 154. Singular points................................................................................................................................................................................................................................................................................................................................................................................................255 155. Determination of the tangent to an algebraic curve at a given point by inspection................................................................................................................................................................................................................................................................................................................................................................................................255 156. Nodes................................................................................................................................................................................................................................................................................................................................................................................................258 157. Cusps................................................................................................................................................................................................................................................................................................................................................................................................259 158. Conjugate or isolated points................................................................................................................................................................................................................................................................................................................................................................................................260 159. Transcendental singularities................................................................................................................................................................................................................................................................................................................................................................................................260 CHAPTER XX
APPLICATIONS TO GEOMETRY OF SPACE160. Tangent line and normal plane to a skew curve whose equations are given in parametric form................................................................................................................................................................................................................................................................................................................................................................................................262 161. Tangent plane to a surface................................................................................................................................................................................................................................................................................................................................................................................................264
162. Normal line to a surface................................................................................................................................................................................................................................................................................................................................................................................................266 163. Another form of the equations of the tangent line to a skew curve................................................................................................................................................................................................................................................................................................................................................................................................268 164. Another form of the equation of the normal plane to a skew curve................................................................................................................................................................................................................................................................................................................................................................................................269 CHAPTER XXI
CURVES FOR REFERENCE
INTEGRAL CALCULUS
CHAPTER XXII
INTEGRATION. RULES FOR INTEGRATING STANDARD ELEMENTARY FORMS165. Integration................................................................................................................................................................................................................................................................................................................................................................................................279 166. Constant of integration. Indefinite integral................................................................................................................................................................................................................................................................................................................................................................................................281 167. Rules for integrating standard elementary forms................................................................................................................................................................................................................................................................................................................................................................................................282 168. Trigonometric differentials................................................................................................................................................................................................................................................................................................................................................................................................298 169. Integration of expressions containing or by a trigonometric substitution................................................................................................................................................................................................................................................................................................................................................................................................304 CHAPTER XXIII
CONSTANT OF INTEGRATION170. Determination of the constant of integration by means of initial conditions................................................................................................................................................................................................................................................................................................................................................................................................307 171. Geometrical signification of the constant of integration................................................................................................................................................................................................................................................................................................................................................................................................307 172. Physical signification of the constant of integration................................................................................................................................................................................................................................................................................................................................................................................................309 CHAPTER XXIV
THE DEFINITE INTEGRAL173. Differential of an area................................................................................................................................................................................................................................................................................................................................................................................................314 174. The definite integral................................................................................................................................................................................................................................................................................................................................................................................................314 175. Calculation of a definite integral................................................................................................................................................................................................................................................................................................................................................................................................316 176. Calculation of areas................................................................................................................................................................................................................................................................................................................................................................................................318 177. Geometrical representation of an integral................................................................................................................................................................................................................................................................................................................................................................................................319 178. Mean value of................................................................................................................................................................................................................................................................................................................................................................................................320 179. Interchange of limits................................................................................................................................................................................................................................................................................................................................................................................................320 180. Decomposition of the interval................................................................................................................................................................................................................................................................................................................................................................................................321 181. The definite integral a function of its limits................................................................................................................................................................................................................................................................................................................................................................................................321 182. Infinite limits................................................................................................................................................................................................................................................................................................................................................................................................321 183. When is discontinuous................................................................................................................................................................................................................................................................................................................................................................................................322
CHAPTER XXV
INTEGRATION OF RATIONAL FRACTIONS184. Introduction................................................................................................................................................................................................................................................................................................................................................................................................325 185. Case I................................................................................................................................................................................................................................................................................................................................................................................................325 186. Case II................................................................................................................................................................................................................................................................................................................................................................................................327 187. Case III................................................................................................................................................................................................................................................................................................................................................................................................329 188. Case IV................................................................................................................................................................................................................................................................................................................................................................................................331 CHAPTER XXVI
INTEGRATION BY SUBSTITUTION OF A NEW VARIABLE. RATIONALIZATION189. Introduction................................................................................................................................................................................................................................................................................................................................................................................................335 190. Differentials containing fractional powers of only................................................................................................................................................................................................................................................................................................................................................................................................335 191. Differentials containing fractional powers of only................................................................................................................................................................................................................................................................................................................................................................................................336 192. Change in limits corresponding to change in variable................................................................................................................................................................................................................................................................................................................................................................................................336 193. Differentials containing no radical except................................................................................................................................................................................................................................................................................................................................................................................................338 194. Differentials containing no radical except................................................................................................................................................................................................................................................................................................................................................................................................338 195. Binomial differentials................................................................................................................................................................................................................................................................................................................................................................................................340 196. Conditions of integrability of binomial differentials................................................................................................................................................................................................................................................................................................................................................................................................341 197. Transformation of trigonometric differentials................................................................................................................................................................................................................................................................................................................................................................................................343 198. Miscellaneous substitutions................................................................................................................................................................................................................................................................................................................................................................................................345 CHAPTER XXVII
INTEGRATION BY PARTS. REDUCTION FORMULAS199. Formula for integration by parts................................................................................................................................................................................................................................................................................................................................................................................................347 200. Reduction formulas for binomial differentials................................................................................................................................................................................................................................................................................................................................................................................................350 201. Reduction formulas for trigonometric differentials................................................................................................................................................................................................................................................................................................................................................................................................356 202. To find and................................................................................................................................................................................................................................................................................................................................................................................................359 CHAPTER XXVIII
INTEGRATION A PROCESS OF SUMMATION203. Introduction................................................................................................................................................................................................................................................................................................................................................................................................361 204. The fundamental theorem of Integral Calculus................................................................................................................................................................................................................................................................................................................................................................................................361 205. Analytical proof of the Fundamental Theorem................................................................................................................................................................................................................................................................................................................................................................................................364 206. Areas of plane curves. Rectangular coördinates................................................................................................................................................................................................................................................................................................................................................................................................365 207. Area when curve is given in parametric form................................................................................................................................................................................................................................................................................................................................................................................................368 208. Areas of plane curves. Polar coördinates................................................................................................................................................................................................................................................................................................................................................................................................370 209. Length of a curve................................................................................................................................................................................................................................................................................................................................................................................................372 210. Lengths of plane curves. Rectangular coördinates................................................................................................................................................................................................................................................................................................................................................................................................373 211. Lengths of plane curves. Polar coördinates................................................................................................................................................................................................................................................................................................................................................................................................375
212. Volumes of solids of revolution................................................................................................................................................................................................................................................................................................................................................................................................377 213. Areas of surfaces of revolution................................................................................................................................................................................................................................................................................................................................................................................................381 214. Miscellaneous applications................................................................................................................................................................................................................................................................................................................................................................................................385 CHAPTER XXIX
SUCCESSIVE AND PARTIAL INTEGRATION215. Successive integration................................................................................................................................................................................................................................................................................................................................................................................................393 216. Partial integration................................................................................................................................................................................................................................................................................................................................................................................................395 217. Definite double integral. Geometric interpretation................................................................................................................................................................................................................................................................................................................................................................................................396 218. Value of a definite double integral over a region................................................................................................................................................................................................................................................................................................................................................................................................400 219. Plane area as a definite double integral. Rectangular coördinates................................................................................................................................................................................................................................................................................................................................................................................................402 220. Plane area as a definite double integral. Polar coördinates................................................................................................................................................................................................................................................................................................................................................................................................406 221. Moment of area................................................................................................................................................................................................................................................................................................................................................................................................408 222. Center of area................................................................................................................................................................................................................................................................................................................................................................................................408 223. Moment of inertia. Plane areas................................................................................................................................................................................................................................................................................................................................................................................................410 224. Polar moment of inertia. Rectangular coördinates................................................................................................................................................................................................................................................................................................................................................................................................410 225. Polar moment of inertia. Polar coördinates................................................................................................................................................................................................................................................................................................................................................................................................411 226. General method for finding the areas of surfaces................................................................................................................................................................................................................................................................................................................................................................................................413 227. Volumes found by triple integration................................................................................................................................................................................................................................................................................................................................................................................................417 CHAPTER XXX
ORDINARY DIFFERENTIAL EQUATIONS228. Differential equations. Order and degree................................................................................................................................................................................................................................................................................................................................................................................................421 229. Solutions of differential equations................................................................................................................................................................................................................................................................................................................................................................................................422 230. Verifications of solutions................................................................................................................................................................................................................................................................................................................................................................................................423 231. Differential equations of the first order and of the first degree................................................................................................................................................................................................................................................................................................................................................................................................424 232. Differential equations of the order and of the first degree................................................................................................................................................................................................................................................................................................................................................................................................432 CHAPTER XXXI
INTEGRAPH. APPROXIMATE INTEGRATION. TABLE OF INTEGRALS233. Mechanical integration................................................................................................................................................................................................................................................................................................................................................................................................443 234. Integral curves................................................................................................................................................................................................................................................................................................................................................................................................443 235. The integraph................................................................................................................................................................................................................................................................................................................................................................................................445 236. Polar planimeter................................................................................................................................................................................................................................................................................................................................................................................................446 237. Area swept over by a line................................................................................................................................................................................................................................................................................................................................................................................................446 238. Approximate integration................................................................................................................................................................................................................................................................................................................................................................................................448 239. Trapezoidal rule................................................................................................................................................................................................................................................................................................................................................................................................448 240. Simpson's rule (parabolic rule)................................................................................................................................................................................................................................................................................................................................................................................................449 241. Integrals for reference................................................................................................................................................................................................................................................................................................................................................................................................451 - ................................................................................................................................................................................................................................................................................................................................................................................................
461