Jump to content

Elements of the Differential and Integral Calculus/Contents

From Wikisource

  1. CONTENTS

    DIFFERENTIAL CALCULUS

    CHAPTER I
    COLLECTION OF FORMULAS

  2. SECTIONPAGE
  3. 1.
    Formulas from Algebra, Trigonometry, and Analytic Geometry
    ................................................................................................................................................................................................................................................................................................................................................................................................
    1
  4. 2.
    Greek alphabet
    ................................................................................................................................................................................................................................................................................................................................................................................................
    3
  5. 3.
    Rules for signs in the four quadrants
    ................................................................................................................................................................................................................................................................................................................................................................................................
    3
  6. 4.
    Natural values of the trigonometric functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    4
  7. 5.
    Tables of logarithms
    ................................................................................................................................................................................................................................................................................................................................................................................................
    5
  8. CHAPTER II
    VARIABLES AND FUNCTIONS

  9. 6.
    Variables and constants
    ................................................................................................................................................................................................................................................................................................................................................................................................
    6
  10. 7.
    Interval of a variable
    ................................................................................................................................................................................................................................................................................................................................................................................................
    6
  11. 8.
    Continuous variation
    ................................................................................................................................................................................................................................................................................................................................................................................................
    6
  12. 9.
    Functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    7
  13. 10.
    Independent and dependent variables
    ................................................................................................................................................................................................................................................................................................................................................................................................
    7
  14. 11.
    Notation of functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    8
  15. 12.
    Values of the independent variable for which a function is defined
    ................................................................................................................................................................................................................................................................................................................................................................................................
    8
  16. CHAPTER III
    THEORY OF LIMITS

  17. 13.
    Limit of a variable
    ................................................................................................................................................................................................................................................................................................................................................................................................
    11
  18. 14.
    Division by zero excluded
    ................................................................................................................................................................................................................................................................................................................................................................................................
    12
  19. 15.
    Infinitesimals
    ................................................................................................................................................................................................................................................................................................................................................................................................
    13
  20. 16.
    The concept of infinity ()
    ................................................................................................................................................................................................................................................................................................................................................................................................
    13
  21. 17.
    Limiting value of a function
    ................................................................................................................................................................................................................................................................................................................................................................................................
    14
  22. 18.
    Continuous and discontinuous functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    14
  23. 19.
    Continuity and discontinuity of functions illustrated by their graphs
    ................................................................................................................................................................................................................................................................................................................................................................................................
    16
  24. 20.
    Fundamental theorems on limits
    ................................................................................................................................................................................................................................................................................................................................................................................................
    18
  25. 21.
    Special limiting values
    ................................................................................................................................................................................................................................................................................................................................................................................................
    20
  26. 22.
    The limit of as
    ................................................................................................................................................................................................................................................................................................................................................................................................
    21
  27. 23.
    The number
    ................................................................................................................................................................................................................................................................................................................................................................................................
    22
  28. 24.
    Expressions assuming the form
    ................................................................................................................................................................................................................................................................................................................................................................................................
    23
  29. CHAPTER IV

    DIFFERENTIATION

  30. 25.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    25
  31. 26.
    Increments
    ................................................................................................................................................................................................................................................................................................................................................................................................
    25
  32. 27.
    Comparison of increments
    ................................................................................................................................................................................................................................................................................................................................................................................................
    26
  33. 28.
    Derivative of a function of one variable
    ................................................................................................................................................................................................................................................................................................................................................................................................
    27
  34. 29.
    Symbols for derivatives
    ................................................................................................................................................................................................................................................................................................................................................................................................
    28
  35. 30.
    Differentiable functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    29
  36. 31.
    General rule for differentiation
    ................................................................................................................................................................................................................................................................................................................................................................................................
    29
  37. 32.
    Applications of the derivative to Geometry
    ................................................................................................................................................................................................................................................................................................................................................................................................
    31
  38. CHAPTER V
    RULES FOR DIFFERENTIATING STANDARD ELEMENTARY FORMS

  39. 33.
    Importance of General Rule
    ................................................................................................................................................................................................................................................................................................................................................................................................
    34
  40. 34.
    Differentiation of a constant
    ................................................................................................................................................................................................................................................................................................................................................................................................
    36
  41. 35.
    Differentiation of a variable with respect to itself
    ................................................................................................................................................................................................................................................................................................................................................................................................
    37
  42. 36.
    Differentiation of a sum
    ................................................................................................................................................................................................................................................................................................................................................................................................
    37
  43. 37.
    Differentiation of the product of a constant and a function
    ................................................................................................................................................................................................................................................................................................................................................................................................
    37
  44. 38.
    Differentiation of the product of two functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    38
  45. 39.
    Differentiation of the product of any finite number of functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    38
  46. 40.
    Differentiation of a function with a constant exponent
    ................................................................................................................................................................................................................................................................................................................................................................................................
    39
  47. 41.
    Differentiation of a quotient
    ................................................................................................................................................................................................................................................................................................................................................................................................
    40
  48. 42.
    Differentiation of a function of a function
    ................................................................................................................................................................................................................................................................................................................................................................................................
    44
  49. 43.
    Differentiation of inverse functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    45
  50. 44.
    Differentiation of a logarithm
    ................................................................................................................................................................................................................................................................................................................................................................................................
    46
  51. 45.
    Differentiation of the simple exponential function
    ................................................................................................................................................................................................................................................................................................................................................................................................
    48
  52. 46.
    Differentiation of the general exponential function
    ................................................................................................................................................................................................................................................................................................................................................................................................
    49
  53. 47.
    Logarithmic differentiation
    ................................................................................................................................................................................................................................................................................................................................................................................................
    50
  54. 48.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    54
  55. 49.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    55
  56. 50.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    56
  57. 51.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    56
  58. 52.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    56
  59. 53.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    57
  60. 54.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    57
  61. 55.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    61
  62. 56.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    62
  63. 57.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    62
  64. 58.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    63
  65. 59.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    63
  66. 60.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    64
  67. 61.
    Differentiation of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    65
  68. 62.
    Implicit functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    69
  69. 63.
    Differentiation of implicit functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    69
  70. CHAPTER VI
    SIMPLE APPLICATIONS OF THE DERIVATIVE

  71. 64.
    Direction of a curve
    ................................................................................................................................................................................................................................................................................................................................................................................................
    73
  72. 65.
    Equations of tangent and normal, lengths of subtangent and subnormal. Rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    76
  73. 66.
    Parametric equations of a curve
    ................................................................................................................................................................................................................................................................................................................................................................................................
    79
  74. 67.
    Angle between the radius vector drawn to a point on a curve and the tangent to the curve at that point
    ................................................................................................................................................................................................................................................................................................................................................................................................
    83
  75. 68.
    Lengths of polar subtangent and polar subnormal
    ................................................................................................................................................................................................................................................................................................................................................................................................
    86
  76. 69.
    Solution of equations having multiple roots
    ................................................................................................................................................................................................................................................................................................................................................................................................
    88
  77. 70.
    Applications of the derivative in mechanics. Velocity
    ................................................................................................................................................................................................................................................................................................................................................................................................
    90
  78. 71.
    Component velocities
    ................................................................................................................................................................................................................................................................................................................................................................................................
    91
  79. 72.
    Acceleration
    ................................................................................................................................................................................................................................................................................................................................................................................................
    92
  80. 73.
    Component accelerations
    ................................................................................................................................................................................................................................................................................................................................................................................................
    93
  81. CHAPTER VII
    SUCCESSIVE DIFFERENTIATION

  82. 74.
    Definition of successive derivatives
    ................................................................................................................................................................................................................................................................................................................................................................................................
    97
  83. 75.
    Notation
    ................................................................................................................................................................................................................................................................................................................................................................................................
    97
  84. 76.
    The derivative
    ................................................................................................................................................................................................................................................................................................................................................................................................
    98
  85. 77.
    Leibnitz's formula for the derivative of a product
    ................................................................................................................................................................................................................................................................................................................................................................................................
    98
  86. 78.
    Successive differentiation of implicit functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    100
  87. CHAPTER VIII
    MAXIMA AND MINIMA. POINTS OF INFLECTION. CURVE TRACING

  88. 79.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    103
  89. 80.
    Increasing and decreasing functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    106
  90. 81.
    Tests for determining when a function is increasing and when decreasing
    ................................................................................................................................................................................................................................................................................................................................................................................................
    108
  91. 82.
    Maximum and minimum values of a function
    ................................................................................................................................................................................................................................................................................................................................................................................................
    109
  92. 83.
    First method for examining a function for maximum and minimum values
    ................................................................................................................................................................................................................................................................................................................................................................................................
    111
  93. 84.
    Second method for examining a function for maximum and minimum values
    ................................................................................................................................................................................................................................................................................................................................................................................................
    112
  94. 85.
    Definition of points of inflection and rule for finding points of inflection
    ................................................................................................................................................................................................................................................................................................................................................................................................
    125
  95. 86.
    Curve tracing
    ................................................................................................................................................................................................................................................................................................................................................................................................
    128
  96. CHAPTER IX
    DIFFERENTIALS

  97. 87.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    131
  98. 88.
    Definitions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    131
  99. 89.
    Infinitesimals
    ................................................................................................................................................................................................................................................................................................................................................................................................
    132
  100. 90.
    Derivative of the arc in rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    134
  101. 91.
    Derivative of the arc in polar coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    135
  102. 92.
    Formulas for finding the differentials of functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    137
  103. 93.
    Successive differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    139
  104. CHAPTER X
    RATES

  105. 94.
    The derivative considered as the ratio of two rates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    141
  106. CHAPTER XI
    CHANGE OF VARIABLE

  107. 95.
    Interchange of dependent and independent variables
    ................................................................................................................................................................................................................................................................................................................................................................................................
    148
  108. 96.
    Change of the dependent variable
    ................................................................................................................................................................................................................................................................................................................................................................................................
    149
  109. 97.
    Change of the independent variable
    ................................................................................................................................................................................................................................................................................................................................................................................................
    150
  110. 98.
    Simultaneous change of both independent and dependent variables
    ................................................................................................................................................................................................................................................................................................................................................................................................
    152
  111. CHAPTER XII
    CURVATURE. RADIUS OF CURVATURE

  112. 99.
    Curvature
    ................................................................................................................................................................................................................................................................................................................................................................................................
    155
  113. 100.
    Curvature of a circle
    ................................................................................................................................................................................................................................................................................................................................................................................................
    155
  114. 101.
    Curvature at a point
    ................................................................................................................................................................................................................................................................................................................................................................................................
    156
  115. 102.
    Formulas for curvature
    ................................................................................................................................................................................................................................................................................................................................................................................................
    159
  116. 103.
    Radius of curvature
    ................................................................................................................................................................................................................................................................................................................................................................................................
    159
  117. 104.
    Circle of curvature
    ................................................................................................................................................................................................................................................................................................................................................................................................
    161
  118. CHAPTER XIII
    THEOREM OF MEAN VALUE. INDETERMINATE FORMS

  119. 105.
    Rolle's Theorem
    ................................................................................................................................................................................................................................................................................................................................................................................................
    164
  120. 106.
    The Theorem of Mean Value
    ................................................................................................................................................................................................................................................................................................................................................................................................
    165
  121. 107.
    The Extended Theorem of Mean Value
    ................................................................................................................................................................................................................................................................................................................................................................................................
    166
  122. 108.
    Maxima and minima treated analytically
    ................................................................................................................................................................................................................................................................................................................................................................................................
    167
  123. 109.
    Indeterminate forms
    ................................................................................................................................................................................................................................................................................................................................................................................................
    170
  124. 110.
    Evaluation of a function taking on an indeterminate form
    ................................................................................................................................................................................................................................................................................................................................................................................................
    170
  125. 111.
    Evaluation of the indeterminate form
    ................................................................................................................................................................................................................................................................................................................................................................................................
    171
  126. 112.
    Evaluation of the indeterminate form
    ................................................................................................................................................................................................................................................................................................................................................................................................
    174
  127. 113.
    Evaluation of the indeterminate form
    ................................................................................................................................................................................................................................................................................................................................................................................................
    174
  128. 114.
    Evaluation of the indeterminate form
    ................................................................................................................................................................................................................................................................................................................................................................................................
    175
  129. 115.
    Evaluation of the indeterminate forms
    ................................................................................................................................................................................................................................................................................................................................................................................................
    176
  130. CHAPTER XIV
    CIRCLE OF CURVATURE. CENTER OF CURVATURE

  131. 116.
    Circle of curvature. Center of curvature
    ................................................................................................................................................................................................................................................................................................................................................................................................
    178
  132. 117.
    Second method for finding center of curvature
    ................................................................................................................................................................................................................................................................................................................................................................................................
    180
  133. 118.
    Center of curvature the limiting position of the intersection of normals at neighboring points
    ................................................................................................................................................................................................................................................................................................................................................................................................
    181
  134. 119.
    Evolutes
    ................................................................................................................................................................................................................................................................................................................................................................................................
    182
  135. 120.
    Properties of the evolute
    ................................................................................................................................................................................................................................................................................................................................................................................................
    186
  136. 121.
    Involutes and their mechanical construction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    187
  137. CHAPTER XV
    PARTIAL DIFFERENTIATION

  138. 122.
    Continuous functions of two or more independent variables
    ................................................................................................................................................................................................................................................................................................................................................................................................
    190
  139. 123.
    Partial derivatives
    ................................................................................................................................................................................................................................................................................................................................................................................................
    191
  140. 124.
    Partial derivatives interpreted geometrically
    ................................................................................................................................................................................................................................................................................................................................................................................................
    192
  141. 125.
    Total derivatives
    ................................................................................................................................................................................................................................................................................................................................................................................................
    194
  142. 126.
    Total differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    197
  143. 127.
    Differentiation of implicit functions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    198
  144. 128.
    Successive partial derivatives
    ................................................................................................................................................................................................................................................................................................................................................................................................
    202
  145. 129.
    Order of differentiation immaterial
    ................................................................................................................................................................................................................................................................................................................................................................................................
    203
  146. CHAPTER XVI
    ENVELOPES

  147. 130.
    Family of curves. Variable parameter
    ................................................................................................................................................................................................................................................................................................................................................................................................
    205
  148. 131.
    Envelope of a family of curves depending on one parameter
    ................................................................................................................................................................................................................................................................................................................................................................................................
    205
  149. 132.
    The evolute of a given curve considered as the envelope of its normals
    ................................................................................................................................................................................................................................................................................................................................................................................................
    208
  150. 133.
    Two parameters connected by one equation of condition
    ................................................................................................................................................................................................................................................................................................................................................................................................
    209
  151. CHAPTER XVII
    SERIES

  152. 134.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    212
  153. 135.
    Infinite series
    ................................................................................................................................................................................................................................................................................................................................................................................................
    213
  154. 136.
    Existence of a limit
    ................................................................................................................................................................................................................................................................................................................................................................................................
    215
  155. 137.
    Fundamental test for convergence
    ................................................................................................................................................................................................................................................................................................................................................................................................
    216
  156. 138.
    Comparison test for convergence
    ................................................................................................................................................................................................................................................................................................................................................................................................
    217
  157. 139.
    Cauchy's ratio test for convergence
    ................................................................................................................................................................................................................................................................................................................................................................................................
    218
  158. 140.
    Alternating series
    ................................................................................................................................................................................................................................................................................................................................................................................................
    220
  159. 141.
    Absolute convergence
    ................................................................................................................................................................................................................................................................................................................................................................................................
    220
  160. 142.
    Power series
    ................................................................................................................................................................................................................................................................................................................................................................................................
    223
  161. CHAPTER XVIII
    EXPANSION OF FUNCTIONS

  162. 143.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    227
  163. 144.
    Taylor's Theorem and Taylor's Series
    ................................................................................................................................................................................................................................................................................................................................................................................................
    228
  164. 145.
    Maclaurin's Theorem and Maclaurin's Series
    ................................................................................................................................................................................................................................................................................................................................................................................................
    230
  165. 146.
    Computation by series
    ................................................................................................................................................................................................................................................................................................................................................................................................
    234
  166. 147.
    Approximate formulas derived from series. Interpolation
    ................................................................................................................................................................................................................................................................................................................................................................................................
    237
  167. 148.
    Taylor's Theorem for functions of two or more variables
    ................................................................................................................................................................................................................................................................................................................................................................................................
    240
  168. 149.
    Maxima and minima of functions of two independent variables
    ................................................................................................................................................................................................................................................................................................................................................................................................
    243
  169. CHAPTER XIX
    ASYMPTOTES. SINGULAR POINTS

  170. 150.
    Rectilinear asymptotes
    ................................................................................................................................................................................................................................................................................................................................................................................................
    249
  171. 151.
    Asymptotes found by method of limiting intercepts
    ................................................................................................................................................................................................................................................................................................................................................................................................
    249
  172. 152.
    Method of determining asymptotes to algebraic curves
    ................................................................................................................................................................................................................................................................................................................................................................................................
    250
  173. 153.
    Asymptotes in polar coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    254
  174. 154.
    Singular points
    ................................................................................................................................................................................................................................................................................................................................................................................................
    255
  175. 155.
    Determination of the tangent to an algebraic curve at a given point by inspection
    ................................................................................................................................................................................................................................................................................................................................................................................................
    255
  176. 156.
    Nodes
    ................................................................................................................................................................................................................................................................................................................................................................................................
    258
  177. 157.
    Cusps
    ................................................................................................................................................................................................................................................................................................................................................................................................
    259
  178. 158.
    Conjugate or isolated points
    ................................................................................................................................................................................................................................................................................................................................................................................................
    260
  179. 159.
    Transcendental singularities
    ................................................................................................................................................................................................................................................................................................................................................................................................
    260
  180. CHAPTER XX
    APPLICATIONS TO GEOMETRY OF SPACE

  181. 160.
    Tangent line and normal plane to a skew curve whose equations are given in parametric form
    ................................................................................................................................................................................................................................................................................................................................................................................................
    262
  182. 161.
    Tangent plane to a surface
    ................................................................................................................................................................................................................................................................................................................................................................................................
    264
  183. 162.
    Normal line to a surface
    ................................................................................................................................................................................................................................................................................................................................................................................................
    266
  184. 163.
    Another form of the equations of the tangent line to a skew curve
    ................................................................................................................................................................................................................................................................................................................................................................................................
    268
  185. 164.
    Another form of the equation of the normal plane to a skew curve
    ................................................................................................................................................................................................................................................................................................................................................................................................
    269
  186. CHAPTER XXI
    CURVES FOR REFERENCE


    INTEGRAL CALCULUS

    CHAPTER XXII
    INTEGRATION. RULES FOR INTEGRATING STANDARD ELEMENTARY FORMS

  187. 165.
    Integration
    ................................................................................................................................................................................................................................................................................................................................................................................................
    279
  188. 166.
    Constant of integration. Indefinite integral
    ................................................................................................................................................................................................................................................................................................................................................................................................
    281
  189. 167.
    Rules for integrating standard elementary forms
    ................................................................................................................................................................................................................................................................................................................................................................................................
    282
  190. 168.
    Trigonometric differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    298
  191. 169.
    Integration of expressions containing or by a trigonometric substitution
    ................................................................................................................................................................................................................................................................................................................................................................................................
    304
  192. CHAPTER XXIII
    CONSTANT OF INTEGRATION

  193. 170.
    Determination of the constant of integration by means of initial conditions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    307
  194. 171.
    Geometrical signification of the constant of integration
    ................................................................................................................................................................................................................................................................................................................................................................................................
    307
  195. 172.
    Physical signification of the constant of integration
    ................................................................................................................................................................................................................................................................................................................................................................................................
    309
  196. CHAPTER XXIV
    THE DEFINITE INTEGRAL

  197. 173.
    Differential of an area
    ................................................................................................................................................................................................................................................................................................................................................................................................
    314
  198. 174.
    The definite integral
    ................................................................................................................................................................................................................................................................................................................................................................................................
    314
  199. 175.
    Calculation of a definite integral
    ................................................................................................................................................................................................................................................................................................................................................................................................
    316
  200. 176.
    Calculation of areas
    ................................................................................................................................................................................................................................................................................................................................................................................................
    318
  201. 177.
    Geometrical representation of an integral
    ................................................................................................................................................................................................................................................................................................................................................................................................
    319
  202. 178.
    Mean value of
    ................................................................................................................................................................................................................................................................................................................................................................................................
    320
  203. 179.
    Interchange of limits
    ................................................................................................................................................................................................................................................................................................................................................................................................
    320
  204. 180.
    Decomposition of the interval
    ................................................................................................................................................................................................................................................................................................................................................................................................
    321
  205. 181.
    The definite integral a function of its limits
    ................................................................................................................................................................................................................................................................................................................................................................................................
    321
  206. 182.
    Infinite limits
    ................................................................................................................................................................................................................................................................................................................................................................................................
    321
  207. 183.
    When is discontinuous
    ................................................................................................................................................................................................................................................................................................................................................................................................
    322
  208. CHAPTER XXV
    INTEGRATION OF RATIONAL FRACTIONS

  209. 184.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    325
  210. 185.
    Case I
    ................................................................................................................................................................................................................................................................................................................................................................................................
    325
  211. 186.
    Case II
    ................................................................................................................................................................................................................................................................................................................................................................................................
    327
  212. 187.
    Case III
    ................................................................................................................................................................................................................................................................................................................................................................................................
    329
  213. 188.
    Case IV
    ................................................................................................................................................................................................................................................................................................................................................................................................
    331
  214. CHAPTER XXVI
    INTEGRATION BY SUBSTITUTION OF A NEW VARIABLE. RATIONALIZATION

  215. 189.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    335
  216. 190.
    Differentials containing fractional powers of only
    ................................................................................................................................................................................................................................................................................................................................................................................................
    335
  217. 191.
    Differentials containing fractional powers of only
    ................................................................................................................................................................................................................................................................................................................................................................................................
    336
  218. 192.
    Change in limits corresponding to change in variable
    ................................................................................................................................................................................................................................................................................................................................................................................................
    336
  219. 193.
    Differentials containing no radical except
    ................................................................................................................................................................................................................................................................................................................................................................................................
    338
  220. 194.
    Differentials containing no radical except
    ................................................................................................................................................................................................................................................................................................................................................................................................
    338
  221. 195.
    Binomial differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    340
  222. 196.
    Conditions of integrability of binomial differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    341
  223. 197.
    Transformation of trigonometric differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    343
  224. 198.
    Miscellaneous substitutions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    345
  225. CHAPTER XXVII
    INTEGRATION BY PARTS. REDUCTION FORMULAS

  226. 199.
    Formula for integration by parts
    ................................................................................................................................................................................................................................................................................................................................................................................................
    347
  227. 200.
    Reduction formulas for binomial differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    350
  228. 201.
    Reduction formulas for trigonometric differentials
    ................................................................................................................................................................................................................................................................................................................................................................................................
    356
  229. 202.
    To find and
    ................................................................................................................................................................................................................................................................................................................................................................................................
    359
  230. CHAPTER XXVIII
    INTEGRATION A PROCESS OF SUMMATION

  231. 203.
    Introduction
    ................................................................................................................................................................................................................................................................................................................................................................................................
    361
  232. 204.
    The fundamental theorem of Integral Calculus
    ................................................................................................................................................................................................................................................................................................................................................................................................
    361
  233. 205.
    Analytical proof of the Fundamental Theorem
    ................................................................................................................................................................................................................................................................................................................................................................................................
    364
  234. 206.
    Areas of plane curves. Rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    365
  235. 207.
    Area when curve is given in parametric form
    ................................................................................................................................................................................................................................................................................................................................................................................................
    368
  236. 208.
    Areas of plane curves. Polar coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    370
  237. 209.
    Length of a curve
    ................................................................................................................................................................................................................................................................................................................................................................................................
    372
  238. 210.
    Lengths of plane curves. Rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    373
  239. 211.
    Lengths of plane curves. Polar coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    375
  240. 212.
    Volumes of solids of revolution
    ................................................................................................................................................................................................................................................................................................................................................................................................
    377
  241. 213.
    Areas of surfaces of revolution
    ................................................................................................................................................................................................................................................................................................................................................................................................
    381
  242. 214.
    Miscellaneous applications
    ................................................................................................................................................................................................................................................................................................................................................................................................
    385
  243. CHAPTER XXIX
    SUCCESSIVE AND PARTIAL INTEGRATION

  244. 215.
    Successive integration
    ................................................................................................................................................................................................................................................................................................................................................................................................
    393
  245. 216.
    Partial integration
    ................................................................................................................................................................................................................................................................................................................................................................................................
    395
  246. 217.
    Definite double integral. Geometric interpretation
    ................................................................................................................................................................................................................................................................................................................................................................................................
    396
  247. 218.
    Value of a definite double integral over a region
    ................................................................................................................................................................................................................................................................................................................................................................................................
    400
  248. 219.
    Plane area as a definite double integral. Rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    402
  249. 220.
    Plane area as a definite double integral. Polar coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    406
  250. 221.
    Moment of area
    ................................................................................................................................................................................................................................................................................................................................................................................................
    408
  251. 222.
    Center of area
    ................................................................................................................................................................................................................................................................................................................................................................................................
    408
  252. 223.
    Moment of inertia. Plane areas
    ................................................................................................................................................................................................................................................................................................................................................................................................
    410
  253. 224.
    Polar moment of inertia. Rectangular coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    410
  254. 225.
    Polar moment of inertia. Polar coördinates
    ................................................................................................................................................................................................................................................................................................................................................................................................
    411
  255. 226.
    General method for finding the areas of surfaces
    ................................................................................................................................................................................................................................................................................................................................................................................................
    413
  256. 227.
    Volumes found by triple integration
    ................................................................................................................................................................................................................................................................................................................................................................................................
    417
  257. CHAPTER XXX
    ORDINARY DIFFERENTIAL EQUATIONS

  258. 228.
    Differential equations. Order and degree
    ................................................................................................................................................................................................................................................................................................................................................................................................
    421
  259. 229.
    Solutions of differential equations
    ................................................................................................................................................................................................................................................................................................................................................................................................
    422
  260. 230.
    Verifications of solutions
    ................................................................................................................................................................................................................................................................................................................................................................................................
    423
  261. 231.
    Differential equations of the first order and of the first degree
    ................................................................................................................................................................................................................................................................................................................................................................................................
    424
  262. 232.
    Differential equations of the order and of the first degree
    ................................................................................................................................................................................................................................................................................................................................................................................................
    432
  263. CHAPTER XXXI
    INTEGRAPH. APPROXIMATE INTEGRATION. TABLE OF INTEGRALS

  264. 233.
    Mechanical integration
    ................................................................................................................................................................................................................................................................................................................................................................................................
    443
  265. 234.
    Integral curves
    ................................................................................................................................................................................................................................................................................................................................................................................................
    443
  266. 235.
    The integraph
    ................................................................................................................................................................................................................................................................................................................................................................................................
    445
  267. 236.
    Polar planimeter
    ................................................................................................................................................................................................................................................................................................................................................................................................
    446
  268. 237.
    Area swept over by a line
    ................................................................................................................................................................................................................................................................................................................................................................................................
    446
  269. 238.
    Approximate integration
    ................................................................................................................................................................................................................................................................................................................................................................................................
    448
  270. 239.
    Trapezoidal rule
    ................................................................................................................................................................................................................................................................................................................................................................................................
    448
  271. 240.
    Simpson's rule (parabolic rule)
    ................................................................................................................................................................................................................................................................................................................................................................................................
    449
  272. 241.
    Integrals for reference
    ................................................................................................................................................................................................................................................................................................................................................................................................
    451
  273. ................................................................................................................................................................................................................................................................................................................................................................................................
    461