Light waves and their uses/Lecture VIII
LECTURE VIII
THE ETHER
The velocity of light is so enormously greater than anything with which we are accustomed to deal that the mind has some little difficulty in grasping it. A bullet travels at the rate of approximately half a mile a second. Sound, in a steel wire, travels at the rate of three miles a second. From this—if we agree to except the velocities of the heavenly bodies—there is no intermediate step to the velocity of light, which is about 186,000 miles a second. We can, perhaps, give a better idea of this velocity by saying that light will travel around the world seven times between two ticks of a clock.
Now, the velocity of wave propagation can be seen, without the aid of any mathematical analysis, to depend on the elasticity of the medium and its density; for we can see that if a medium is highly elastic the disturbance would be propagated at a great speed. Also, if the medium is dense the propagation would be slower than if it were rare. It can easily be shown that if the elasticity were represented by E, and the density by D, the velocity would be represented by the square root of E divided by D. So that, if the density of the medium which propagates light waves were as great as the density of steel, the elasticity, since the velocity of light is some 60,000 times as great as that of the propagation of sound in a steel wire, must be 60,000 squared times as great as the elasticity of steel. Thus, this medium which propagates light vibrations would have to have an elasticity of the order of 3,600,000,000 times the elasticity of steel. Or, if the elasticity of the medium were the same as that of steel, the density would have to be 3,600,000,000 times as small as that of steel, that is to say, roughly speaking, about 50,000 times as small as the density of hydrogen, the lightest known gas. Evidently, then, a medium which propagates vibrations with such an enormous velocity must have an enormously high elasticity or abnormally low density. In any case, its properties would be of an entirely different order from the properties of the substances with which we are accustomed to deal, so that it belongs in a category by itself.
Another course of reasoning which leads to this same conclusion—namely, that this medium is not any ordinary form of matter, such as air or gas or steel—is the following: Sound is produced by a bell under a receiver of an air pump. When the air has the same density inside the receiver as outside, the sound reaches the ear of an observer without difficulty. But when the air is gradually pumped out of the receiver, the sound becomes fainter and fainter until it ceases entirely. If the same thing were true of light, and we exhausted a vessel in which a source of light—an incandescent lamp, for example—had been placed, then, after a certain degree of exhaustion was reached, we ought to see the light less clearly than before. We know, however, that the contrary is the case, i. e., that the light is actually brighter and clearer when the exhaustion of the receiver has been carried to the highest possible degree. The probabilities are enormously against the conclusion that light is transmitted by the very small quantity of residual gas. There are other theoretical reasons, into which we will not enter.
Whatever the process of reasoning, we are led to the same result. We know that light vibrations are transverse to the direction of propagation, while sound vibrations are in the direction of propagation. We know also that in the case of a solid body transverse vibrations can be readily transmitted. Thus, if we have a long cylindrical rod and we give one end of it a twist, the twist will travel along from one end to the other. If the medium, instead of being a solid rod, were a tube of liquid, and were twisted at one end, there would be no corresponding transmission of the twist to the other end, for a liquid cannot transmit a torsional strain. Hence this reasoning leads to the conclusion that if the medium which propagates light vibrations has the properties of ordinary matter, it must be considered to be an elastic solid rather than a fluid.
This conclusion was considered one of the most formidable objections to the undulatory theory that light consists of waves. For this medium, notwithstanding the necessity for the assumption that it has the properties of a solid, must yet be of such a nature as to offer little resistance to the motion of a body through it. Take, for example, the motion of the planets around the sun. The resistance of the medium is so small that the earth has been traveling around the sun millions of years without any appreciable increase in the length of the year. Even the vastly lighter and more attenuated comets return to the same point periodically, and the time of such periodical returns has been carefully noted from the earliest historical times, and yet no appreciable increase in it has been detected. We are thus confronted with the apparent inconsistency of a solid body which must at the same time possess in such a marked degree the properties of a perfect fluid as to offer no appreciable resistance to the motion of bodies so very light and extended as the comets. We are, however, not without analogies, for, as was stated in the first lecture, substances such as shoemaker's wax show the properties of an elastic solid when reacting against rapid motions, but act like a liquid under pressures.
In the case of shoemaker's wax both of these contradictory properties are very imperfectly realized, but we can argue from this fact that the medium which we are considering might have the various properties which it must possess in an enormously exaggerated degree. It is, at any rate, not at all inconceivable that such a medium should at the same time possess both properties. We know that the air itself does not possess such properties, and that no matter which we know possesses them in sufficient degree to account for the propagation of light. Hence the conclusion that light vibrations are not propagated by ordinary matter, but by something else. Cogent as these three lines of reasoning may be, it is undoubtedly true that they do not always carry conviction. There is, so far as I am aware, no process of reasoning upon this subject which leads to a result which is free from objection and absolutely conclusive.
But these are not the only paradoxes connected with the medium which transmits light. There was an observation made by Bradley a great many years ago, for quite another purpose. He found that when we observe the position of a star by means of the telescope, the star seems shifted from its actual position, by a certain small angle called the angle of aberration. He attributed this effect to the motion of the earth in its orbit, and gave an explanation of the phenomenon which is based on the corpuscular theory and is apparently very simple. We will give this explanation, notwithstanding the fact that we know the corpuscular theory to be erroneous.
Let us suppose a raindrop to be falling vertically and an observer to be carrying, say, a gun, the barrel being as nearly vertical as he can hold it. If the observer is not moving and the raindrop falls in the center of the upper end of the barrel, it will fall centrally through the lower end. Suppose, however, that the observer is in motion in the direction bd (Fig. 104); the raindrop will still fall exactly vertically, but if the gun advances laterally while the raindrop is within the barrel, it strikes against the side. In order to make the raindrop move centrally along the axis of the barrel, it is evidently necessary to incline the gun at an angle such as bad. The gun barrel is now pointing, apparently, in the wrong direction, by an angle whose tangent is the ratio of the velocity of the observer to the velocity of the raindrop.
According to the modulatory theory, the explanation is a trifle more complex; but it can easily be seen that, if the medium we are considering is motionless and the gun barrel represents a telescope, and the waves from the star are moving in the direction ad, they will be concentrated at a point which is in the axis of the telescope, unless the latter is in motion. But if the earth carrying the telescope is moving with a velocity something like twenty miles a second, and we are observing the stars in a direction approximately at right angles to the direction of that motion, the light from the star will not come to a focus on the axis of the telescope, but will form an image in a new position, so that the telescope appears to be pointing in the wrong direction. In order to bring the image on the axis of the instrument, we must turn the telescope from its position through an angle whose tangent is the ratio of the velocity of the earth in its orbit to the velocity of light. The velocity of light is, as before stated, 186,000 miles a second—200,000 in round numbers—and the velocity of the earth in its orbit is roughly twenty miles a second. Hence the tangent of the angle of aberration would be measured by the ratio of 1 to 10,000. More accurately, this angle is 20.445″. The limit of accuracy of the telescope, as was pointed out in several of the preceding lectures, is about one-tenth of a second; but, by repeating these measurements under a great many variations in the conditions of the problem, this limit may be passed, and it is practically certain that this number is correct to the second decimal place.
When this variation in the apparent position of the stars was discovered, it was accounted for correctly by the assumption that light travels with a finite velocity, and that, by measuring the angle of aberration, and knowing the speed of the earth in its orbit, the velocity of light could be found. This velocity has since been determined much more accurately by experimental means, so that now we use the velocity of light to deduce the velocity of the earth and the radius of its orbit.
The objection to this explanation was, however, raised that if this angle were the ratio of the velocity of the earth in its orbit to the velocity of light, and if we filled a telescope with water, in which the velocity of light is known to be only three-fourths of what it is in air, it would take one and one-third times as long for the light to pass from the center of the objective to the cross-wires, and hence we ought to observe, not the actual angle of aberration, but one which should be one-third greater. The experiment was actually tried. A telescope was filled with water, and observations on various stars were continued throughout the greater part of the year, with the result that almost exactly the same value was found for the angle of aberration.
This result was considered a very serious objection to the undulatory theory until an explanation was found by Fresnel. He proposed that we consider that the medium which transmits the light vibrations is carried along by the motion of the water in the telescope in the direction of the motion of the earth around the sun. Now, if the light waves were carried along with the full velocity of the earth in its orbit, we should be in the same difficulty, or in a more serious difficulty, than before. Fresnel, however, made the further supposition that the velocity of the carrying along of the light waves by the motion of the medium was less than the actual velocity of the medium itself, by a quantity which depended on the index of refraction of the substance. In the case of water the value of this factor is seven-sixteenths.
This, at first sight, seems a rather forced explanation; indeed, at the time it was proposed it was treated with considerable incredulity. An experiment was made by Fizeau, however, to test the point—in my opinion one of the most ingenious experiments that have ever been attempted in the whole domain of physics. The problem is to find the increase in the velocity of light due to a motion of the medium. We have an analogous problem in the case of sound, but in this case it is a very much simpler matter. We know by actual experiment, as we should infer without experiment, that the velocity of sound is increased by the velocity of a wind which carries the air in the same direction, or diminished if the wind moves in the opposite direction. But in the case of light waves the velocity is so enormously great that it would seem, at first sight, altogether out of the question to compare it with any velocity which we might be able to obtain in a transparent medium such as water or glass. The problem consists in finding the change in the velocity of light produced by the greatest velocity we can get—about twenty feet a second—in a column of water through which light waves pass. We thus have to find a difference of the order of twenty feet in 186,000 miles, i. e., of one part in 50,000,000. Besides, we can get only a relatively small column of water to pass light through and still see the light when it returns.
The difficulty is met, however, by taking advantage of the excessive minuteness of light waves themselves. This double length of the water column is something like forty feet. In this forty feet there are, in round numbers, 14,000,000 waves. Hence the difference due to a velocity of twenty feet per second, which is the velocity of the water current, would produce a displacement of the interference fringes (produced by two beams, one of which passes down the column and the other up the column of the moving liquid) of about one-half a fringe, which corresponds to a difference of one-half a light wave in the paths. Reversing the water current should produce a shifting of one-half a fringe in the opposite direction, so that the total shifting would actually be of the order of one interference fringe. But we can easily observe one-tenth of a fringe, or in some cases even less than that. Now, one fringe would be the displacement if water is the medium which transmits the light waves. But this other medium we have been talking about moves, according to Fresnel, with a smaller velocity than the water, and the ratio of the velocity of the medium to the velocity of the water should be a particular fraction, namely, seven-sixteenths. In other words, then, instead of the whole fringe we ought to get a displacement of seven-sixteenths of a fringe by the reversal of the water current. The experiment was actually tried by Fizeau, and the result was that the fringes were shifted by a quantity less than they should have been if water had been the medium; and hence we conclude that the water was not the medium which carried the vibrations.
The arrangement of the apparatus which was used in the experiment is shown in Fig. 105. The light starts from a narrow slit S, is rendered parallel by a lens L, and separated into two pencils by apertures in front of the two tubes TT, which carry the column of water. Both tubes are closed by pieces of the same plane-parallel plate of glass. The light passes through these two tubes and is brought to a focus by the lens in condition to produce interference fringes. The apparatus might have been arranged in this way but for the fact that there would be changes in the position of the interference fringes whenever the density or temperature of the medium changed; and, in particular, whenever the current changes direction there would be produced alterations in length and changes in density; and these exceedingly slight differences are quite sufficient to account for any motion of the fringes. In order to avoid this disturbance, Fresnel had the idea of placing at the focus of the lens the mirror M, so that the two rays return, the one which came through the upper tube going back through the lower, and vice versa for the other ray. In this way the two rays pass through identical paths and come together at the same point from which they started. With this arrangement, if there is any shifting of the fringes, it must be due to the reversal of the change in velocity due to the current of water. For one of the two beams, say the upper one, travels with the current in both tubes; the other, starting at the same point, travels against the current in both tubes. Upon reversing the direction of the current of water the circumstances are exactly the reverse: the beam which before traveled with the current now travels against it, etc. The result of the experiment, as before stated, was that there was produced a displacement of less than should have been produced by the motion of the liquid. How much less was not determined. To this extent the experiment was imperfect.
On this account, and also for the reason that the experiment was regarded as one of the most important in the entire subject of optics, it seemed to me that it was desirable to repeat it in order to determine, not only the fact that the displacement was less than could be accounted for by the motion of the water, but also, if possible, how much less. For this purpose the apparatus was modified in several important points, and is shown in Fig. 106.
It will be noted that the principle of the interferometer has been used to produce interference fringes of considerable breadth without at the same time reducing the intensity of the light. Otherwise, the experiment is essentially the same as that made by Fizeau. The light starts from a bright flame of ordinary gas light, is rendered parallel by the lens, and then falls on the surface, which divides it into two parts, one reflected and one transmitted. The reflected portion goes down one tube, is reflected twice by the total reflection prism P through the other tube, and passes, after necessary reflection, into the observing telescope. The other ray pursues the contrary path, and we see interference fringes in the telescope as before, but enormously brighter and more definite. This arrangement made it possible to make measurements of the displacement of the fringes which were very accurate. The result of the experiment was that the measured displacement was almost exactly seven-sixteenths of what it would have been had the medium which transmits the light waves moved with the velocity of the water.
It was at one time proposed to test this problem by utilizing the velocity of the earth in its orbit. Since this velocity is so very much greater than anything we can produce at the earth's surface, it was supposed that such measurements could be made with considerable ease; and they were actually tried in quite a considerable number of different ways and by very eminent men. The fact is, we cannot utilize the velocity of the earth in its orbit for such experiments, for the reason that we have to determine our directions by points outside of the earth, and the only thing we have is the stars, and the stars are displaced by this very element which we want to measure; so the results would be entirely negative. It was pointed out by Lorentz that it is impossible by any measurements made on the surface of the earth to detect any effect of the earth's motion.
Maxwell considered it possible, theoretically at least, to deal with the square of the ratio of the two velocities; that is, the square of , or . He further indicated that if we made two measurements of the velocity of light, one in the direction in which the earth is traveling in its orbit, and one in a direction at right angles to this, then the time it takes light to pass over the same length of path is greater in the first case than in the second.
We can easily appreciate the fact that the time is greater in this case, by considering a man rowing in a boat, first in a smooth pond and then in a river. If he rows at the rate of four miles an hour, for example, and the distance between the stations is twelve miles, then it would take him three hours to pull there and three to pull back—six hours in all. This is his time when there is no current. If there is a current, suppose at the rate of one mile an hour, then the time it would take to go from one point to the other, would be, not 12 divided by 4, but 12 divided by 4 + 1, i. e., 2.4 hours. In coming back the time would be 12 divided by 4 − 1, which would be 4 hours, and this added to the other time equals 6.4 instead of 6 hours. It takes him longer, then, to pass back and forth when the medium is in motion than when the medium is at rest. We can understand, then, that it would take light longer to travel back and forth in the direction of the motion of the earth. The difference in the times is, however, so exceedingly small, being of the order of 1 in 100,000,000, that Maxwell considered it practically hopeless to attempt to detect it.
In spite of this apparently hopeless smallness of the quantities to be observed, it was thought that the minuteness of the light waves might again come to our rescue. As a matter of fact, an experiment was devised for detecting this small quantity. The conditions which the apparatus must fulfil are rather complex. The total distance traveled must be as great as possible, something of the order of one hundred million waves, for example. Another condition requires that we be able to interchange the direction without altering the adjustment by even the one hundredth-millionth part. Further, the apparatus must be absolutely free from vibration.
The problem was practically solved by reflecting part of the light back and forth a number of times and then returning it to its starting-point. The other path was at right angles to the first, and over it the light made a similar series of excursions, and was also reflected back to the starting-point. This starting-point was a separating plane in an interferometer, and the two paths at right angles were the two arms of an interferometer. Notwithstanding the very considerable difference in path, which must involve an exceedingly high order of accuracy in the reflecting surfaces and a constancy of temperature in the air between, it was possible to see fringes and to keep them in position for several hours at a time.
These conditions having been fulfilled, the apparatus was mounted on a stone support, about four feet square and one foot thick, and this stone was mounted on a circular disc of wood which floated in a tank of mercury. The resistance to motion is thus exceedingly small, so that by a very slight pressure on the circumference the whole could be kept in slow and continuous rotation. It would take, perhaps, five minutes to make one single turn. With this slight motion there is practically no oscillation; the observer has to follow around and at intervals to observe whether there is any displacement of the fringes.
It was found that there was no displacement of the interference fringes, so that the result of the experiment was negative and would, therefore, show that there is still a difficulty in the theory itself; and this difficulty, I may say, has not yet been satisfactorily explained. I am presenting the case, not so much for solution, but as an illustration of the applicability of light waves to new problems.
The actual arrangement of the experiment is shown in Fig. 107. A lens makes the rays nearly parallel. The dividing surface and the two paths are easily recognized. The telescope was furnished with a micrometer screw to determine the amount of displacement of the fringes, if there were any. The last mirror is mounted on a slide; so these two paths may be made equal to the necessary degree of accuracy—something of the order of one fifty-thousandth of an inch.
Fig. 108 represents the actual apparatus. The stone and the circular disc of wood supporting the stone in the tank filled with mercury are readily recognized; also the dividing surface and the various mirrors.
It was considered that, if this experiment gave a positive result, it would determine the velocity, not merely of the earth in its orbit, but of the earth through the ether. With good reason it is supposed that the sun and all the planets as well are moving through space at a rate of perhaps twenty miles per second in a certain particular direction. The velocity is not very well determined, and it was hoped that with this experiment we could measure this velocity of the whole solar system through space. Since the result of the experiment was negative, this problem is still demanding a solution.
The experiment is to me historically interesting, because it was for the solution of this problem that the interferometer was devised. I think it will be admitted that the problem, by leading to the invention of the interferometer, more than compensated for the fact that this particular experiment gave a negative result.
From all that precedes it appears practically certain that there must be a medium whose proper function it is to transmit light waves. Such a medium is also necessary for the transmission of electrical and magnetic effects. Indeed, it is fairly well established that light is an electro-magnetic disturbance, like that due to a discharge from an induction coil or a condenser. Such electric waves can be reflected and refracted and polarized, and be made to produce vibrations and other changes, just as the light waves can. The only difference between them and the light waves is in the wave length.
This difference may be enormous or quite moderate. For example, a telegraphic wave, which is practically an electro-magnetic disturbance, may be as long as one thousand miles. The waves produced by the oscillations of a condenser, like a Leyden jar, may be as short as one hundred feet; the waves produced by a Hertz oscillator may be as short as one-tenth of an inch. Between this and the longest light wave there is not an enormous gap, for the latter has a length of about one-thousandth of an inch. Thus the difference between the Hertz vibrations and the longest light wave is less than the difference between the longest and shortest light waves, for some of the shortest oscillations are only a few millionths of an inch long. Doubtless even this gap will soon be bridged over.
The settlement of the fact that light is a magneto-electric oscillation is in no sense an explanation of the nature of light. It is only a transference of the problem, for the question then arises as to the nature of the medium and of the mechanical actions involved in such a medium which sustains and transmits these electro-magnetic disturbances.
A suggestion which is very attractive on account of its simplicity is that the ether itself is electricity; a much more probable one is that electricity is an ether strain—that a displacement of the ether is equivalent to an electric current. If this is true, we are returning to our elastic-solid theory. I may quote a statement which Lord Kelvin made in reply to a rather skeptical question as to the existence of a medium about which so very little is supposed to be known. The reply was: "Yes, ether is the only form of matter about which we know anything at all." In fact, the moment we begin to inquire into the nature of the ultimate particles of ordinary matter, we are at once enveloped in a sea of conjecture and hypotheses—all of great difficulty and complexity.
One of the most promising of these hypotheses is the "ether vortex theory," which, if true, has the merit of introducing nothing new into the hypotheses already made, but only of specifying the particular form of motion required. The most natural form of such vortex motions with which to deal is that illustrated by ordinary smoke rings, such as are frequently blown from the stack of a locomotive. Such vortex rings may easily be produced by filling with smoke a box which has a circular aperture at one end and a rubber diaphragm at the other, and then tapping the rubber. The friction against the side of the opening, as the puff of smoke passes out, produces a rotary motion, and the result will be smoke rings or vortices.
Investigation shows that these smoke rings possess, to a certain degree, the properties which we are accustomed to associate with atoms, notwithstanding the fact that the medium in which these smoke rings exists is far from ideal. If the medium were ideal, it would be devoid of friction, and then the motion, when once started, would continue indefinitely, and that part of the ether which is differentiated by this motion would ever remain so.
Another peculiarity of the ring is that it cannot be cut—it simply winds around the knife. Of course, in a very short time the motion in a smoke ring ceases in consequence of the viscosity of the air, but it would continue indefinitely in such a frictionless medium as we suppose the ether to be.
There are a number of other analogies which we have not time to enter into—quite a number of details and instances of the interactions of the various atoms which have been investigated. In fact, there are so many analogies that we are tempted to think that the vortex ring is in reality an enlarged image of the atom. The mathematics of the subject is unfortunately very difficult, and this seems to be one of the principal reasons for the slow progress made in the theory.
Suppose that an ether strain corresponds to an electric charge, an ether displacement to the electric current, these ether vortices to the atoms—if we continue these suppositions, we arrive at what may be one of the grandest generalizations of modern science—of which we are tempted to say that it ought to be true even if it is not—namely, that all the phenomena of the physical universe are only different manifestations of the various modes of motions of one all-pervading substance—the ether.
All modern investigation tends toward the elucidation of this problem, and the day seems not far distant when the converging lines from many apparently remote regions of thought will meet on this common ground. Then the nature of the atoms, and the forces called into play in their chemical union; the interactions between these atoms and the non-differentiated ether as manifested in the phenomena of light and electricity; the structures of the molecules and molecular systems of which the atoms are the units; the explanation of cohesion, elasticity, and gravitation—all these will be marshaled into a single compact and consistent body of scientific knowledge.
SUMMARY
1. A number of independent courses of reasoning lead to the conclusion that the medium which propagates light waves is not an ordinary form of matter. Little as we know about it, we may say that our ignorance of ordinary matter is still greater.
2. In all probability, it not only exists where ordinary matter does not, but it also permeates all forms of matter. The motion of a medium such as water is found not to add its full value to the velocity of light moving through it, but only such a fraction of it as is perhaps accounted for on the hypothesis that the ether itself does not partake of this motion.
3. The phenomenon of the aberration of the fixed stars can be accounted for on the hypothesis that the ether does not partake of the earth's motion in its revolution about the sun. All experiments for testing this hypothesis have, however, given negative results, so that the theory may still be said to be in an unsatisfactory condition.