Jump to content

Page:A History of Mathematics (1893).djvu/190

From Wikisource
This page has been proofread, but needs to be validated.
VIETA TO DESCARTES.
171

solved the majority of the problems proposed by Kepler. Though expeditious and yielding correct results, Cavalieri's method lacks a scientific foundation. If a line has absolutely no width, then no number, however great, of lines can ever make up an area; if a plane has no thickness whatever, then even an infinite number of planes cannot form a solid. The reason why this method led to correct conclusions is that one area is to another area in the same ratio as the sum of the series of lines in the one is to the sum of the series of lines in the other. Though unscientific, Cavalieri's method was used for fifty years as a sort of integral calculus. It yielded solutions to some difficult problems. Guldin made a severe attack on Cavalieri and his method. The latter published in 1647, after the death of Guldin, a treatise entitled Exercitationes geometricœ sex, in which he replied to the objections of his opponent and attempted to give a clearer explanation of his method. Guldin had never been able to demonstrate the theorem named after him, except by metaphysical reasoning, but Cavalieri proved it by the method of indivisibles. A revised edition of the Geometry of Indivisibles appeared in 1653.

There is an important curve, not known to the ancients, which now began to be studied with great zeal. Roberval gave it the name of "trochoid," Pascal the name of "roulette," Galileo the name of "cycloid." The invention of this curve seems to be due to Galileo, who valued it for the graceful form it would give to arches in architecture. He ascertained its area by weighing paper figures of the cycloid against that of the generating circle, and found thereby the first area to be nearly but not exactly thrice the latter. A mathematical determination was made by his pupil, Evangelista Torricelli (1608–1647), who is more widely known as a physicist than as a mathematician.