Jump to content

Page:A History of Mathematics (1893).djvu/191

From Wikisource
This page has been proofread, but needs to be validated.
172
A HISTORY OF MATHEMATICS.

By the Method of Indivisibles he demonstrated its area to be triple that of the revolving circle, and published his solution. This same quadrature had been effected a few years earlier by Roberval in France, but his solution was not known to the Italians. Roberval, being a man of irritable and violent disposition, unjustly accused the mild and amiable Torricelli of stealing the proof. This accusation of plagiarism created so much chagrin with Torricelli that it is considered to have been the cause of his early death. Vincenzo Viviani, another prominent pupil of Galileo, determined the tangent to the cycloid. This was accomplished in France by Descartes and Fermat.

In France, where geometry began to be cultivated with greatest success, Roberval, Fermat, Pascal, employed the Method of Indivisibles and made new improvements in it. Giles Persone de Roberval (1602–1675), for forty years professor of mathematics at the College of France in Paris, claimed for himself the invention of the Method of Indivisibles. Since his complete works were not published until after his death, it is difficult to settle questions of priority. Montucla and Chasles are of the opinion that he invented the method independent of and earlier than the Italian geometer, though the work of the latter was published much earlier than Roberval's. Marie finds it difficult to believe that the Frenchman borrowed nothing whatever from the Italian, for both could not have hit independently upon the word Indivisibles, which is applicable to infinitely small quantities, as conceived by Cavalieri, but not as conceived by Roberval. Roberval and Pascal improved the rational basis of the Method of Indivisibles, by considering an area as made up of an indefinite number of rectangles instead of lines, and a solid as composed of indefinitely small solids instead of surfaces. Roberval applied the method to the finding of