the knowledge of the cycloid. He determined the area of a section produced by any line parallel to the base; the volume generated by it revolving around its base or around the axis; and, finally, the centres of gravity of these volumes, and also of half these volumes cut by planes of symmetry. Before publishing his results, he sent, in 1658, to all mathematicians that famous challenge offering prizes for the first two solutions of these problems. Only Wallis and A. La Louère competed for them. The latter was quite unequal to the task; the former, being pressed for time, made numerous mistakes: neither got a prize. Pascal then published his own solutions, which produced a great sensation among scientific men. Wallis, too, published his, with the errors corrected. Though not competing for the prizes, Huygens, Wren, and Format solved some of the questions. The chief discoveries of Christopher Wren (1632–1723), the celebrated architect of St. Paul's Cathedral in London, were the rectification of a cycloidal arc and the determination of its centre of gravity. Fermat found the area generated by an arc of the cycloid. Huygens invented the cycloidal pendulum.
The beginning of the seventeenth century witnessed also a revival of synthetic geometry. One who treated conics still by ancient methods, but who succeeded in greatly simplifying many prolix proofs of Apollonius, was Claude Mydorge in Paris (1585–1647), a friend of Descartes. But it remained for Girard Desargues (1593–1662) of Lyons, and for Pascal, to leave the beaten track and cut out fresh paths. They introduced the important method of Perspective. All conics on a cone with circular base appear circular to an eye at the apex. Hence Desargues and Pascal conceived the treatment of the conic sections as projections of circles. Two important and beautiful theorems were given by Desargues: The one is on the "involution of the six points," in which a transversal