meets a conic and an inscribed quadrangle; the other is that, if the vertices of two triangles, situated either in space or in a plane, lie on three lines meeting in a point, then their sides meet in three points lying on a line; and conversely. This last theorem has been employed in recent times by Branchion, Sturm, Gergonne, and Poncelet. Poncelet made it the basis of his beautiful theory of homoligical figures. We owe to Desargues the theory of involution and of transversals; also the beautiful conception that the two extremities of a straight line may be considered as meeting at infinity, and that parallels differ from other pairs of lines only in having their points of intersection at infinity. Pascal greatly admired Desargues' results, saying (in his Essais pour les Coniques), "I wish to acknowledge that I owe the little that I have discovered on this subject, to his writings." Pascal's and Desargues' writings contained the fundamental ideas of modern synthetic geometry. In Pascal's wonderful work on conics, written at the age of sixteen and now lost, were given the theorem on the anharmonic ratio, first found in Pappus, and also that celebrated proposition on the mystic hexagon, known as "Pascal's theorem," viz. that the opposite sides of a hexagon inscribed in a conic intersect in three points which are collinear. This theorem formed the keystone to his theory. He himself said that from this alone he deduced over 400 corollaries, embracing the conics of Apollonius and many other results. Thus the genius of Desargues and Pascal uncovered several of the rich treasures of modern synthetic geometry; but owing to the absorbing interest taken in the analytical geometry of Descartes and later in the differential calculus, the subject was almost entirely neglected until the present century.
In the theory of numbers no new results of scientific value had been reached for over 1000 years, extending from the