370
CONDUCTION IN HETEROGENEOUS MEDIA.
[320.
of conductivity, Art. 298 . If we put
D
{\displaystyle D}
for the determinant of the coefficients of resistance, we find
u
r
3
D
=
R
2
X
¯
−
Q
3
Y
¯
+
w
¯
q
2
D
,
v
r
3
D
=
R
1
Y
¯
−
P
3
X
¯
+
w
¯
p
1
D
,
Z
r
3
=
−
p
2
X
¯
−
q
1
Y
¯
+
w
¯
.
{\displaystyle {\begin{array}{ll}ur_{3}D&=R_{2}{\overline {X}}-Q_{3}{\overline {Y}}+{\overline {w}}q_{2}D,\\vr_{3}D&=R_{1}{\overline {Y}}-P_{3}{\overline {X}}+{\overline {w}}p_{1}D,\\Zr_{3}&=-p_{2}{\overline {X}}-q_{1}{\overline {Y}}+{\overline {w}}.\end{array}}}
Similar equations with the symbols accented give the values of
u
′
,
v
′
{\displaystyle u',\,v'}
and
z
′
.
{\displaystyle z'.}
Having found
u
¯
,
v
¯
{\displaystyle {\overline {u}},\,{\overline {v}}}
and
w
¯
{\displaystyle {\overline {w}}}
in terms of
X
¯
,
Y
¯
{\displaystyle {\overline {X}},\,{\overline {Y}}}
and
Z
¯
,
{\displaystyle {\overline {Z}},}
we may write down the equations of conductivity of the stratified conductor. If we make
h
=
c
r
3
{\displaystyle h={\frac {c}{r_{3}}}}
and
h
′
=
c
′
r
3
′
,
{\displaystyle h'={\frac {c'}{r_{3}'}},}
we find
p
¯
1
=
h
p
1
+
h
′
p
1
′
h
+
h
′
,
q
¯
1
=
h
q
1
+
h
′
q
1
′
h
+
h
′
,
p
¯
2
=
h
p
2
+
h
′
p
2
′
h
+
h
′
,
q
¯
2
=
h
q
2
+
h
′
q
2
′
h
+
h
′
,
p
¯
3
=
c
p
3
+
c
′
p
3
′
c
+
c
′
−
h
h
′
(
q
1
−
q
1
′
)
(
q
2
−
q
2
′
)
(
h
+
h
′
)
(
c
+
c
′
)
,
q
¯
3
=
c
q
3
+
c
′
q
3
′
c
+
c
′
−
h
h
′
(
p
1
−
p
1
′
)
(
p
2
−
p
2
′
)
(
h
+
h
′
)
(
c
+
c
′
)
,
r
¯
1
=
c
r
1
+
c
′
r
1
′
c
+
c
′
−
h
h
′
(
p
2
−
p
2
′
)
(
q
2
−
q
2
′
)
(
h
+
h
′
)
(
c
+
c
′
)
,
r
¯
2
=
c
r
2
+
c
′
r
2
′
c
+
c
′
−
h
h
′
(
p
1
−
p
1
′
)
(
q
1
−
q
1
′
)
(
h
+
h
′
)
(
c
+
c
′
)
,
{\displaystyle {\begin{array}{l}{\overline {p}}_{1}={\frac {hp_{1}+h'p_{1}'}{h+h'}},\quad \quad {\overline {q}}_{1}={\frac {hq_{1}+h'q_{1}'}{h+h'}},\\{\overline {p}}_{2}={\frac {hp_{2}+h'p_{2}'}{h+h'}},\quad \quad {\overline {q}}_{2}={\frac {hq_{2}+h'q_{2}'}{h+h'}},\\{\overline {p}}_{3}={\frac {cp_{3}+c'p_{3}'}{c+c'}}-{\frac {hh'(q_{1}-q_{1}')(q_{2}-q_{2}')}{(h+h')(c+c')}},\\{\overline {q}}_{3}={\frac {cq_{3}+c'q_{3}'}{c+c'}}-{\frac {hh'(p_{1}-p_{1}')(p_{2}-p_{2}')}{(h+h')(c+c')}},\\{\overline {r}}_{1}={\frac {cr_{1}+c'r_{1}'}{c+c'}}-{\frac {hh'(p_{2}-p_{2}')(q_{2}-q_{2}')}{(h+h')(c+c')}},\\{\overline {r}}_{2}={\frac {cr_{2}+c'r_{2}'}{c+c'}}-{\frac {hh'(p_{1}-p_{1}')(q_{1}-q_{1}')}{(h+h')(c+c')}},\end{array}}}
r
¯
3
=
c
+
c
′
h
+
h
′
.
{\displaystyle {\begin{array}{c}{\overline {r}}_{3}={\frac {c+c'}{h+h'}}.\end{array}}}
320.] If neither of the two substances of which the strata are formed has the rotatory property of Art. 303 , the value of any
P
{\displaystyle P}
or
p
{\displaystyle p}
will be equal to that of its corresponding
Q
{\displaystyle Q}
or
q
.
{\displaystyle q.}
From this it follows that in the stratified conductor also
p
¯
1
=
q
¯
1
,
p
¯
2
=
q
¯
2
,
p
¯
3
=
q
¯
3
,
{\displaystyle {\overline {p}}_{1}={\overline {q}}_{1},\quad \quad {\overline {p}}_{2}={\overline {q}}_{2},\quad \quad {\overline {p}}_{3}={\overline {q}}_{3},}
or there is no rotatory property developed by stratification, unless it exists in the materials.
321.] If we now suppose that there is no rotatory property, and also that the axes of
x
,
y
{\displaystyle x,\,y}
and
z
{\displaystyle z}
are the principal axes, then the
p
{\displaystyle p}
and
q
{\displaystyle q}
coefficients vanish, and
r
¯
1
=
c
r
1
+
c
′
r
1
′
c
+
c
′
,
r
¯
2
=
c
r
2
+
c
′
r
2
′
c
+
c
′
,
r
¯
3
=
c
+
c
′
c
r
3
+
c
′
r
3
′
{\displaystyle {\overline {r}}_{1}={\frac {cr_{1}+c'r_{1}'}{c+c'}},\quad \quad {\overline {r}}_{2}={\frac {cr_{2}+c'r_{2}'}{c+c'}},\quad \quad {\overline {r}}_{3}={\frac {c+c'}{{\frac {c}{r_{3}}}+{\frac {c'}{r_{3}'}}}}}