1909.]
The transformations of the electrodynamical equations.
283
have
θ
2
=
1
{\displaystyle \theta ^{2}=1}
and eighteen relations of the types
∂
(
y
′
,
z
′
)
∂
(
x
,
y
)
=
θ
∂
(
x
′
,
t
′
)
∂
(
z
,
t
)
{\displaystyle {\frac {\partial (y',z')}{\partial (x,y)}}=\theta {\frac {\partial (x',t')}{\partial (z,t)}}}
∂
(
y
′
,
z
′
)
∂
(
x
,
t
)
=
−
θ
∂
(
x
′
,
t
′
)
∂
(
y
,
z
)
{\displaystyle {\frac {\partial (y',z')}{\partial (x,t)}}=-\theta {\frac {\partial (x',t')}{\partial (y,z)}}}
There are clearly nine relations of the first type and nine relations of the second type. We shall now show that when
θ
2
=
1
{\displaystyle \theta ^{2}=1}
these relations imply that there is a relation of the form
d
x
′
2
+
d
y
′
2
+
d
z
′
2
−
d
t
′
2
=
λ
2
(
d
x
2
+
d
y
2
+
d
z
2
−
d
t
2
)
;
{\displaystyle dx'^{2}+dy'^{2}+dz'^{2}-dt'^{2}=\lambda ^{2}\left(dx^{2}+dy^{2}+dz^{2}-dt^{2}\right);}
for this purpose we shall require the following lemma.
Lemma . — Let the sixteen quantities
(
α
1
α
2
α
3
α
4
)
,
(
β
1
β
2
β
3
β
4
)
,
(
γ
1
γ
2
γ
3
γ
4
)
,
(
δ
1
δ
2
δ
3
δ
4
)
{\displaystyle \left(\alpha _{1}\alpha _{2}\alpha _{3}\alpha _{4}\right),\ \left(\beta _{1}\beta _{2}\beta _{3}\beta _{4}\right),\ \left(\gamma _{1}\gamma _{2}\gamma _{3}\gamma _{4}\right),\ \left(\delta _{1}\delta _{2}\delta _{3}\delta _{4}\right)}
be connected by the eighteen relations of type
β
2
γ
3
−
β
3
γ
2
=
α
1
δ
4
−
α
4
δ
1
,
γ
2
α
3
−
γ
3
α
2
=
β
1
δ
4
−
β
4
δ
1
,
{\displaystyle \beta _{2}\gamma _{3}-\beta _{3}\gamma _{2}=\alpha _{1}\delta _{4}-\alpha _{4}\delta _{1},\ \gamma _{2}\alpha _{3}-\gamma _{3}\alpha _{2}=\beta _{1}\delta _{4}-\beta _{4}\delta _{1},}
α
2
β
3
−
α
3
β
2
=
γ
1
δ
4
−
γ
4
δ
1
,
{\displaystyle \alpha _{2}\beta _{3}-\alpha _{3}\beta _{2}=\gamma _{1}\delta _{4}-\gamma _{4}\delta _{1},}
which imply that conjugate minors of the determinant
[
α
1
β
2
γ
3
δ
4
]
{\displaystyle \left[\alpha _{1}\beta _{2}\gamma _{3}\delta _{4}\right]}
are equal. The identity
α
1
(
α
2
β
3
−
α
3
β
2
)
+
α
2
(
α
3
β
1
−
α
1
β
3
)
+
α
3
(
α
1
β
2
−
α
2
β
1
)
=
0
{\displaystyle \alpha _{1}\left(\alpha _{2}\beta _{3}-\alpha _{3}\beta _{2}\right)+\alpha _{2}\left(\alpha _{3}\beta _{1}-\alpha _{1}\beta _{3}\right)+\alpha _{3}\left(\alpha _{1}\beta _{2}-\alpha _{2}\beta _{1}\right)=0}
then gives
α
1
(
γ
1
δ
4
−
γ
4
δ
1
)
+
α
2
(
γ
2
δ
4
−
γ
4
δ
2
)
+
α
3
(
γ
3
δ
4
−
γ
4
δ
3
)
=
0
{\displaystyle \alpha _{1}\left(\gamma _{1}\delta _{4}-\gamma _{4}\delta _{1}\right)+\alpha _{2}\left(\gamma _{2}\delta _{4}-\gamma _{4}\delta _{2}\right)+\alpha _{3}\left(\gamma _{3}\delta _{4}-\gamma _{4}\delta _{3}\right)=0}
or
δ
4
(
α
1
γ
1
+
α
2
γ
2
+
α
3
γ
3
+
α
4
γ
4
)
=
γ
4
(
α
1
δ
1
+
α
2
δ
2
+
α
3
δ
3
+
α
4
δ
4
)
.
{\displaystyle \delta _{4}\left(\alpha _{1}\gamma _{1}+\alpha _{2}\gamma _{2}+\alpha _{3}\gamma _{3}+\alpha _{4}\gamma _{4}\right)=\gamma _{4}\left(\alpha _{1}\delta _{1}+\alpha _{2}\delta _{2}+\alpha _{3}\delta _{3}+\alpha _{4}\delta _{4}\right).}
Introducing the notation
(
α
γ
)
≡
α
1
γ
1
+
α
2
γ
2
+
α
3
γ
3
+
α
4
γ
4
,
{\displaystyle (\alpha \gamma )\equiv \alpha _{1}\gamma _{1}+\alpha _{2}\gamma _{2}+\alpha _{3}\gamma _{3}+\alpha _{4}\gamma _{4},}
we may obtain in the above way the equations
δ
1
(
α
γ
)
=
γ
1
(
α
δ
)
,
δ
3
(
α
γ
)
=
γ
3
(
α
δ
)
,
δ
2
(
α
γ
)
=
γ
2
(
α
δ
)
,
δ
4
(
α
γ
)
=
γ
4
(
α
δ
)
,
δ
1
(
β
γ
)
=
γ
1
(
β
δ
)
,
δ
3
(
β
γ
)
=
γ
3
(
β
δ
)
,
δ
2
(
β
γ
)
=
γ
2
(
β
δ
)
,
δ
4
(
β
γ
)
=
γ
4
(
β
δ
)
.
{\displaystyle {\begin{array}{ccc}\delta _{1}(\alpha \gamma )=\gamma _{1}(\alpha \delta ),&&\delta _{3}(\alpha \gamma )=\gamma _{3}(\alpha \delta ),\\\\\delta _{2}(\alpha \gamma )=\gamma _{2}(\alpha \delta ),&&\delta _{4}(\alpha \gamma )=\gamma _{4}(\alpha \delta ),\\\\\delta _{1}(\beta \gamma )=\gamma _{1}(\beta \delta ),&&\delta _{3}(\beta \gamma )=\gamma _{3}(\beta \delta ),\\\\\delta _{2}(\beta \gamma )=\gamma _{2}(\beta \delta ),&&\delta _{4}(\beta \gamma )=\gamma _{4}(\beta \delta ).\end{array}}}
Hence, either
(
α
γ
)
=
(
α
δ
)
=
(
β
γ
)
=
(
β
δ
)
=
0
{\displaystyle (\alpha \gamma )=(\alpha \delta )=(\beta \gamma )=(\beta \delta )=0}
or all the quantities of type
γ
1
δ
2
−
γ
2
δ
1
{\displaystyle \gamma _{1}\delta _{2}-\gamma _{2}\delta _{1}}
are zero. In the same way we can prove that either
(
α
β
)
=
(
α
δ
)
=
(
γ
β
)
=
(
γ
δ
)
=
0
{\displaystyle (\alpha \beta )=(\alpha \delta )=(\gamma \beta )=(\gamma \delta )=0}