284
Mr. H. Bateman
[March 11,
or all the quantities of type
β
1
δ
2
−
β
2
δ
1
{\displaystyle \beta _{1}\delta _{2}-\beta _{2}\delta _{1}}
are zero, and that either
(
β
α
)
=
(
β
δ
)
=
(
γ
α
)
=
(
γ
δ
)
=
0
{\displaystyle (\beta \alpha )=(\beta \delta )=(\gamma \alpha )=(\gamma \delta )=0}
or all the quantities of type
α
1
δ
2
−
α
2
δ
1
{\displaystyle \alpha _{1}\delta _{2}-\alpha _{2}\delta _{1}}
are zero. It follows from this that either (1) the six quantities (αβ ) are zero or (2) that the thirty-six quantities
(
α
1
δ
2
−
α
2
δ
1
)
,
(
β
1
δ
2
−
β
2
δ
1
)
,
(
γ
1
δ
2
−
γ
2
δ
1
)
,
…
{\displaystyle \left(\alpha _{1}\delta _{2}-\alpha _{2}\delta _{1}\right),\ \left(\beta _{1}\delta _{2}-\beta _{2}\delta _{1}\right),\ \left(\gamma _{1}\delta _{2}-\gamma _{2}\delta _{1}\right),\ \dots }
are all zero or (3) that there is a set of relations
(
α
γ
)
=
(
α
δ
)
=
(
β
γ
)
=
(
β
δ
)
=
0
{\displaystyle (\alpha \gamma )=(\alpha \delta )=(\beta \gamma )=(\beta \delta )=0}
β
1
δ
1
=
β
2
δ
2
=
β
3
δ
3
=
β
4
δ
4
,
α
1
δ
1
=
α
2
δ
2
=
α
3
δ
3
=
α
4
δ
4
.
{\displaystyle {\frac {\beta _{1}}{\delta _{1}}}={\frac {\beta _{2}}{\delta _{2}}}={\frac {\beta _{3}}{\delta _{3}}}={\frac {\beta _{4}}{\delta _{4}}},\ {\frac {\alpha _{1}}{\delta _{1}}}={\frac {\alpha _{2}}{\delta _{2}}}={\frac {\alpha _{3}}{\delta _{3}}}={\frac {\alpha _{4}}{\delta _{4}}}.}
It is easy to see, however, that in the latter case we also have
(
γ
δ
)
=
(
α
β
)
=
0.
{\displaystyle (\gamma \delta )=(\alpha \beta )=0.}
Hence, in all cases,
(
α
γ
)
=
(
α
β
)
=
(
α
δ
)
=
(
β
γ
)
=
(
β
δ
)
=
(
γ
δ
)
=
0.
{\displaystyle (\alpha \gamma )=(\alpha \beta )=(\alpha \delta )=(\beta \gamma )=(\beta \delta )=(\gamma \delta )=0.}
Again, we have
|
α
1
β
1
γ
1
α
2
β
2
γ
2
α
3
β
3
γ
3
|
=
α
1
(
α
1
δ
4
−
α
4
δ
1
)
+
α
2
(
α
2
δ
4
−
α
4
δ
2
)
+
α
3
(
α
3
δ
4
−
α
4
δ
3
)
=
δ
4
(
α
1
2
+
α
2
2
+
α
3
2
+
α
4
2
)
−
α
4
(
α
1
δ
1
+
α
2
δ
2
+
α
3
δ
3
+
α
4
δ
4
)
;
{\displaystyle \left|{\begin{array}{ccc}\alpha _{1}&\beta _{1}&\gamma _{1}\\\alpha _{2}&\beta _{2}&\gamma _{2}\\\alpha _{3}&\beta _{3}&\gamma _{3}\end{array}}\right|{\begin{array}{l}=\alpha _{1}\left(\alpha _{1}\delta _{4}-\alpha _{4}\delta _{1}\right)+\alpha _{2}\left(\alpha _{2}\delta _{4}-\alpha _{4}\delta _{2}\right)+\alpha _{3}\left(\alpha _{3}\delta _{4}-\alpha _{4}\delta _{3}\right)\\=\delta _{4}\left(\alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+\alpha _{4}^{2}\right)-\alpha _{4}\left(\alpha _{1}\delta _{1}+\alpha _{2}\delta _{2}+\alpha _{3}\delta _{3}+\alpha _{4}\delta _{4}\right);\end{array}}}
hence, since the last term is zero,
|
α
1
β
1
γ
1
α
2
β
2
γ
2
α
3
β
3
γ
3
|
=
δ
4
(
α
1
2
+
α
2
2
+
α
3
2
+
α
4
2
)
.
{\displaystyle \left|{\begin{array}{ccc}\alpha _{1}&\beta _{1}&\gamma _{1}\\\alpha _{2}&\beta _{2}&\gamma _{2}\\\alpha _{3}&\beta _{3}&\gamma _{3}\end{array}}\right|{\begin{array}{l}=\delta _{4}\left(\alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+\alpha _{4}^{2}\right).\end{array}}}
This gives
(
α
1
2
+
α
2
2
+
α
3
2
+
α
4
2
)
(
δ
1
2
+
δ
2
2
+
δ
3
2
+
δ
4
2
)
=
|
α
1
β
1
γ
1
δ
1
α
2
β
2
γ
2
δ
2
α
3
β
3
γ
3
δ
3
α
4
β
4
γ
4
δ
4
|
=
λ
4
,
{\displaystyle {\begin{array}{l}\left(\alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+\alpha _{4}^{2}\right)\left(\delta _{1}^{2}+\delta _{2}^{2}+\delta _{3}^{2}+\delta _{4}^{2}\right)=\end{array}}\left|{\begin{array}{cccc}\alpha _{1}&\beta _{1}&\gamma _{1}&\delta _{1}\\\alpha _{2}&\beta _{2}&\gamma _{2}&\delta _{2}\\\alpha _{3}&\beta _{3}&\gamma _{3}&\delta _{3}\\\alpha _{4}&\beta _{4}&\gamma _{4}&\delta _{4}\end{array}}\right|{\begin{array}{l}=\lambda ^{4},\end{array}}}
say, and there are similar equations in
α
,
β
,
α
γ
,
β
γ
,
β
δ
,
γ
δ
.
{\displaystyle \alpha ,\beta ,\alpha \gamma ,\beta \gamma ,\beta \delta ,\gamma \delta .}
. It follows that
α
1
2
+
α
2
2
+
α
3
2
+
α
4
2
=
β
1
2
+
β
2
2
+
β
3
2
+
β
4
2
=
γ
1
2
+
γ
2
2
+
γ
3
2
+
γ
4
2
=
δ
1
2
+
δ
2
2
+
δ
3
2
+
δ
4
2
=
±
λ
2
{\displaystyle {\begin{array}{cl}\alpha _{1}^{2}+\alpha _{2}^{2}+\alpha _{3}^{2}+\alpha _{4}^{2}&=\beta _{1}^{2}+\beta _{2}^{2}+\beta _{3}^{2}+\beta _{4}^{2}\\&=\gamma _{1}^{2}+\gamma _{2}^{2}+\gamma _{3}^{2}+\gamma _{4}^{2}=\delta _{1}^{2}+\delta _{2}^{2}+\delta _{3}^{2}+\delta _{4}^{2}=\pm \lambda ^{2}\end{array}}}
These conditions, combined with the previous set, imply that the sixteen quantities
α
1
,
β
2
,
…
{\displaystyle \alpha _{1},\beta _{2},\dots }
are the elements of an orthogonal matrix.