ARGUMENT OF DRAMA.
xv
PAGE
Other subjects of enquiry:—
....................................................................................................................................................................................................................................................
|
15 |
(3) |
Superposition;
|
(4) |
Use of diagonals in Euc. II;
|
(5) |
Treatment of Lines;
|
(6) |
Treatment„ of Angles;
|
(7) |
Euclid's Propositions omitted;
|
(8) |
Euclid's„ Propositions„ newly treated;
|
(9) |
New Propositions;
|
(10) |
Style, &c.
|
List of authors to be examined, viz.:—
....................................................................................................................................................................................................................................................
|
16 |
Legendre, Cooley, Cuthbertson, Henrici, Wilson, Pierce, Willock, Chauvenet, Loomis, Morell, Reynolds, Wright, Syllabus of Association for Improvement of Geometrical Teaching, Wilson's 'Syllabus'-Manual.
|
§ 3. The combination, or separation of Problems and Theorems.
Reasons assigned for separation
....................................................................................................................................................................................................................................................
|
18 |
Reasons for combination:—
....................................................................................................................................................................................................................................................
|
19 |
(1) |
Problems are also Theorems;
|
(2) |
Separation would necessitate a new numeration,
|
(3) |
and hypothetical constructions.
|
§ 4. Syllabus of propositions relating to Pairs of Lines.
Three classes of Pairs of Lines:—
....................................................................................................................................................................................................................................................
|
20 |
(1) |
Having two common points;
|