rendered conspicuous service by his translations of various Greek authors. His investigation of the properties of amicable numbers (q.v.) and of the problem of trisecting an angle, are of importance. The Arabians more closely resembled the Hindus than the Greeks in the choice of studies; their philosophers blended speculative dissertations with the more progressive study of medicine; their mathematicians neglected the subtleties of the conic sections and Diophantine analysis, and applied themselves more particularly to perfect the system of numerals (see Numeral), arithmetic and astronomy (q.v.). It thus came about that while some progress was made in algebra, the talents of the race were bestowed on astronomy and trigonometry (q.v.). Fahri des al Karhi, who flourished about the beginning of the 11th century, is the author of the most important Arabian work on algebra. He follows the methods of Diophantus; his work on indeterminate equations has no resemblance to the Indian methods, and contains nothing that cannot be gathered from Diophantus. He solved quadratic equations both geometrically and algebraically, and also equations of the form x2n+axn+b=0; he also proved certain relations between the sum of the first n natural numbers, and the sums of their squares and cubes.
Cubic equations were solved geometrically by determining the intersections of conic sections. Archimedes' problem of dividing a sphere by a plane into two segments having a prescribed ratio, was first expressed as a cubic equation by Al Mahani, and the first solution was given by Abu Gafar al Hazin. The determination of the side of a regular heptagon which can be inscribed or circumscribed to a given circle was reduced to a more complicated equation which was first successfully resolved by Abul Gud. The method of solving equations geometrically was considerably developed by Omar Khayyam of Khorassan, who flourished in the 11th century. This author questioned the possibility of solving cubics by pure algebra, and biquadratics by geometry. His first contention was not disproved until the 15th century, but his second was disposed of by Abul Wefa (940–998), who succeeded in solving the forms and .
Although the foundations of the geometrical resolution of cubic equations are to be ascribed to the Greeks (for Eutocius assigns to Menaechmus two methods of solving the equation and ), yet the subsequent development by the Arabs must be regarded as one of their most important achievements. The Greeks had succeeded in solving an isolated example; the Arabs accomplished the general solution of numerical equations.
Considerable attention has been directed to the different styles in which the Arabian authors have treated their subject. Moritz Cantor has suggested that at one time there existed two schools, one in sympathy with the Greeks, the other with the Hindus; and that, although the writings of the latter were first studied, they were rapidly discarded for the more perspicuous Grecian methods, so that, among the later Arabian writers, the Indian methods were practically forgotten and their mathematics became essentially Greek in character.
Turning to the Arabs in the West we find the same enlightened spirit; Cordova, the capital of the Moorish empire in Spain, was as much a centre of learning as Bagdad. The earliest known Spanish mathematician is Al Madshritti (d. 1007), whose fame rests on a dissertation on amicable numbers, and on the schools which were founded by his pupils at Cordova, Dania and Granada. Gabir ben Aflah of Sevilla, commonly called Geber, was a celebrated astronomer and apparently skilled in algebra, for it has been supposed that the word “algebra” is compounded from his name.
When the Moorish empire began to wane the brilliant intellectual gifts which they had so abundantly nourished during three or four centuries became enfeebled, and after that period they failed to produce an author comparable with those of the 7th to the 11th centuries.
In Europe the decline of Rome was succeeded by a period, lasting several centuries, during which the sciences and arts were all but neglected. Political and ecclesiastical dissensions occupied the greatest intellects, and the only progress to be recorded is in the art of computing or arithmetic, and the translation of Arabic manuscripts. The first successful attempt to revive the study of algebra in Christendom was due to Leonardo of Pisa, an Italian merchant trading in the Mediterranean.Algebra in Europe. His travels and mercantile experience had led him to conclude that the Hindu methods of computing were in advance of those then in general use, and in 1202 he published his Liber Abaci, which treats of both algebra and arithmetic. In this work, which is of great historical interest, since it was published about two centuries before the art of printing was discovered, he adopts the Arabic notation for numbers, and solves many problems, both arithmetical and algebraical. But it contains little that is original, and although the work created a great sensation when it was first published, the effect soon passed away, and the book was practically forgotten. Mathematics was more or less ousted from the academic curricula by the philosophical inquiries of the schoolmen, and it was only after an interval of nearly three centuries that a worthy successor to Leonardo appeared. This was Lucas Paciolus (Lucas de Burgo), a Minorite friar, who, having previously written works on algebra, arithmetic and geometry, published, in 1494, his principal work, entitled Summa de Arithmetica, Geometria, Proportioni et Proportionalita. In it he mentions many earlier writers from whom he had learnt the science, and although it contains very little that cannot be found in Leonardo’s work, yet it is especially noteworthy for the systematic employment of symbols, and the manner in which it reflects the state of mathematics in Europe during this period. These works are the earliest printed books on mathematics. The renaissance of mathematics was thus effected in Italy, and it is to that country that the leading developments of the following century were due. The first difficulty to be overcome was the algebraical solution of cubic equations, theCubic equations. pons asinorum of the earlier mathematicians. The first step in this direction was made by Scipio Ferro (d. 1526), who solved the equation . Of his discovery we know nothing except that he declared it to his pupil Antonio Marie Floridas. An imperfect solution of the equation was discovered by Nicholas Tartalea (Tartaglia) in 1530, and his pride in this achievement led him into conflict with Floridas, who proclaimed his own knowledge of the form resolved by Ferro. Mutual recriminations led to a public discussion in 1535, when Tartalea completely vindicated the general applicability of his methods and exhibited the inefficiencies of that of Floridas. This contest over, Tartalea redoubled his attempts to generalize his methods, and by 1541 he possessed the means for solving any form of cubic equation. His discoveries had made him famous all over Italy, and he was earnestly solicited to publish his methods; but he abstained from doing so, saying that he intended to embody them in a treatise on algebra which he was preparing. At last he succumbed to the repeated requests of Girolamo or Geronimo Cardano, who swore that he would regard them as an inviolable secret. Cardan or Cardano, who was at that time writing his great work, the Ars Magna, could not restrain the temptation of crowning his treatise with such important discoveries, and in 1545 he broke his oath and gave to the world Tartalea’s rules for solving cubic equations. Tartalea, thus robbed of his most cherished possession, was in despair. Recriminations ensued until his death in 1557, and although he sustained his claim for priority, posterity has not conceded to him the honour of his discovery, for his solution is now known as Cardan’s Rule.
Cubic equations having been solved, biquadratics soon followed suit. As early as 1539 Cardan had solved certain particular cases, but it remained for his pupil, Lewis (Ludovici) Ferrari, to devise a general method. His solution, which is sometimes erroneously ascribed to Rafael Bombelli, was published in the Ars Magna. Biquadratic equations.In this work, which is one of the most valuable contributions to the literature of algebra, Cardan shows that he was familiar with both real positive and negative roots of equations whether rational or irrational, but of imaginary roots he was quite ignorant, and he admits his inability to resolve the so-called