(
l
1
λ
1
l
2
λ
2
…
)
{\displaystyle (l_{1}^{\lambda _{1}}l_{2}^{\lambda _{2}}\ldots )}
and it is seen intuitively that the number
θ
{\displaystyle \theta }
remains unaltered when the first two of these partitions are interchanged (see Combinatorial Analysis ). Hence the theorem is established.
Putting
x
1
=
1
{\displaystyle x_{1}=1}
and
x
2
=
x
3
=
x
4
=
…
=
0
,
{\displaystyle x_{2}=x_{3}=x_{4}=\ldots =0,}
we find a particular law of reciprocity given by Cayley and Betti,
(
1
m
1
)
μ
1
(
1
m
2
)
μ
2
(
1
m
3
)
μ
3
…
=
…
+
θ
(
s
1
σ
1
s
2
σ
2
s
3
σ
3
…
)
+
…
,
(
1
s
1
)
σ
1
(
1
s
2
)
σ
2
(
1
s
3
)
σ
3
…
=
…
+
θ
(
m
1
μ
1
m
2
μ
2
m
3
μ
3
…
)
+
…
;
{\displaystyle {\begin{aligned}(1^{m_{1}})^{\mu _{1}}(1^{m_{2}})^{\mu _{2}}(1^{m_{3}})^{\mu _{3}}\ldots &=\ldots +\theta (s_{1}^{\sigma _{1}}s_{2}^{\sigma _{2}}s_{3}^{\sigma _{3}}\ldots )+\ldots ,\\(1^{s_{1}})^{\sigma _{1}}(1^{s_{2}})^{\sigma _{2}}(1^{s_{3}})^{\sigma _{3}}\ldots &=\ldots +\theta (m_{1}^{\mu _{1}}m_{2}^{\mu _{2}}m_{3}^{\mu _{3}}\ldots )+\ldots ;\end{aligned}}}
and another by putting
x
1
=
x
2
=
x
3
=
…
=
1
{\displaystyle x_{1}=x_{2}=x_{3}=\ldots =1}
, for then
X
m
{\displaystyle \mathrm {X} _{m}}
becomes
h
m
{\displaystyle h_{m}}
, and we have
h
m
1
μ
1
h
m
2
μ
2
h
m
3
μ
3
…
=
…
+
θ
′
(
s
1
σ
1
s
2
σ
2
s
3
σ
3
…
)
+
…
,
{\displaystyle h_{m_{1}}^{\mu _{1}}h_{m_{2}}^{\mu _{2}}h_{m_{3}}^{\mu _{3}}\ldots =\ldots +\theta ^{\prime }(s_{1}^{\sigma _{1}}s_{2}^{\sigma _{2}}s_{3}^{\sigma _{3}}\ldots )+\ldots ,}
h
s
1
σ
1
h
s
2
σ
2
h
s
3
σ
3
…
=
…
+
θ
′
(
m
1
μ
1
m
2
μ
2
m
3
μ
3
…
)
+
…
,
{\displaystyle h_{s_{1}}^{\sigma _{1}}h_{s_{2}}^{\sigma _{2}}h_{s_{3}}^{\sigma _{3}}\ldots =\ldots +\theta ^{\prime }(m_{1}^{\mu _{1}}m_{2}^{\mu _{2}}m_{3}^{\mu _{3}}\ldots )+\ldots ,}
Theorem of Expressibility .—“If a symmetric function be symboilized by
(
λ
μ
ν
…
)
{\displaystyle (\lambda \mu \nu \ldots )}
and
(
λ
1
λ
2
λ
3
…
)
,
{\displaystyle (\lambda _{1}\lambda _{2}\lambda _{3}\ldots ),}
(
μ
1
μ
2
μ
3
…
)
,
{\displaystyle (\mu _{1}\mu _{2}\mu _{3}\ldots ),}
(
ν
1
ν
2
ν
3
…
)
…
{\displaystyle (\nu _{1}\nu _{2}\nu _{3}\ldots )\ldots }
be any partitions of
λ
,
μ
,
ν
…
{\displaystyle \lambda ,\mu ,\nu \ldots }
respectively, the function
(
λ
μ
ν
…
)
{\displaystyle (\lambda \mu \nu \ldots )}
is expressible by means of functions symbolized by separation of
(
λ
1
λ
2
λ
3
…
μ
1
μ
2
μ
3
…
ν
1
ν
2
ν
3
…
)
.
”
{\displaystyle (\lambda _{1}\lambda _{2}\lambda _{3}\ldots \mu _{1}\mu _{2}\mu _{3}\ldots \nu _{1}\nu _{2}\nu _{3}\ldots ).{\text{”}}}
For, writing as before,
X
m
1
μ
1
X
m
2
μ
2
X
m
3
μ
3
…
=
Σ
Σ
θ
(
s
1
σ
1
s
2
σ
2
s
3
σ
3
…
)
x
l
1
λ
1
x
l
2
λ
2
x
l
3
λ
3
…
,
{\displaystyle \mathrm {X} _{m_{1}}^{\mu _{1}}\mathrm {X} _{m_{2}}^{\mu _{2}}\mathrm {X} _{m_{3}}^{\mu _{3}}\ldots =\Sigma \Sigma \theta (s_{1}^{\sigma _{1}}s_{2}^{\sigma _{2}}s_{3}^{\sigma _{3}}\ldots )x_{l_{1}}^{\lambda _{1}}x_{l_{2}}^{\lambda _{2}}x_{l_{3}}^{\lambda _{3}}\ldots ,}
=
Σ
P
x
l
1
λ
1
x
l
2
λ
2
x
l
3
λ
3
…
,
{\displaystyle =\Sigma {\text{P}}x_{l_{1}}^{\lambda _{1}}x_{l_{2}}^{\lambda _{2}}x_{l_{3}}^{\lambda _{3}}\ldots ,}
P
{\displaystyle {\text{P}}}
is a linear function of separations of
(
l
1
λ
1
l
2
λ
2
l
3
λ
3
…
)
{\displaystyle (l_{1}^{\lambda _{1}}l_{2}^{\lambda _{2}}l_{3}^{\lambda _{3}}\ldots )}
of specification
(
m
1
μ
1
m
2
μ
2
m
3
μ
3
…
)
,
{\displaystyle (m_{1}^{\mu _{1}}m_{2}^{\mu _{2}}m_{3}^{\mu _{3}}\ldots ),}
and if
X
s
1
σ
1
X
s
2
σ
2
X
s
3
σ
3
…
=
Σ
P
′
x
l
1
λ
1
x
l
2
λ
2
x
l
3
λ
3
…
,
P
′
{\displaystyle \mathrm {X} _{s_{1}}^{\sigma _{1}}\mathrm {X} _{s_{2}}^{\sigma _{2}}\mathrm {X} _{s_{3}}^{\sigma _{3}}\ldots =\Sigma {\text{P}}^{\prime }x_{l_{1}}^{\lambda _{1}}x_{l_{2}}^{\lambda _{2}}x_{l_{3}}^{\lambda _{3}}\ldots ,{\text{P}}^{\prime }}
is a linear function of separations of
(
l
1
λ
1
l
2
λ
2
l
3
λ
3
…
)
{\displaystyle (l_{1}^{\lambda _{1}}l_{2}^{\lambda _{2}}l_{3}^{\lambda _{3}}\ldots )}
of specification
(
s
1
σ
1
s
2
σ
2
s
3
σ
3
…
)
.
{\displaystyle (s_{1}^{\sigma _{1}}s_{2}^{\sigma _{2}}s_{3}^{\sigma _{3}}\ldots ).}
Suppose the separations of
(
l
1
λ
1
l
2
λ
2
l
3
λ
3
…
)
{\displaystyle (l_{1}^{\lambda _{1}}l_{2}^{\lambda _{2}}l_{3}^{\lambda _{3}}\ldots )}
to involve
k
{\displaystyle k}
different specifications and form the
k
{\displaystyle k}
identities
X
m
1
s
μ
1
s
X
m
2
s
μ
2
s
X
m
3
s
μ
3
s
…
=
Σ
P
(
s
)
x
l
1
λ
1
x
l
2
λ
2
x
l
3
λ
3
…
(
s
=
1
,
2
,
…
k
)
,
{\displaystyle \mathrm {X} _{m_{1s}}^{\mu _{1s}}\mathrm {X} _{m_{2s}}^{\mu _{2s}}\mathrm {X} _{m_{3s}}^{\mu _{3s}}\ldots =\Sigma {\text{P}}^{(s)}x_{l_{1}}^{\lambda _{1}}x_{l_{2}}^{\lambda _{2}}x_{l_{3}}^{\lambda _{3}}\ldots (s=1,2,\ldots k),}
where
m
1
s
μ
1
s
m
2
s
μ
2
s
m
3
s
μ
3
s
…
)
{\displaystyle m_{1s}^{\mu _{1s}}m_{2s}^{\mu _{2s}}m_{3s}^{\mu _{3s}}\ldots )}
is one of the
k
{\displaystyle k}
specifications.
The law of reciprocity shows that
P
(
s
)
=
Σ
θ
s
t
t
=
1
t
=
k
(
m
1
t
μ
1
t
m
2
t
μ
2
t
m
3
t
μ
3
t
…
)
,
{\displaystyle {\text{P}}^{(s)}={\overset {t=k}{\underset {t=1}{\Sigma \theta _{st}}}}(m_{1t}^{\mu _{1t}}m_{2t}^{\mu _{2t}}m_{3t}^{\mu _{3t}}\ldots ),}
viz.: a linear function of symmetric functions symbolized by the
k
{\displaystyle k}
specifications; and that
θ
s
t
=
θ
t
s
.
{\displaystyle \theta _{st}=\theta _{ts}.}
A table may be formed expressing the
k
{\displaystyle k}
expressions
P
(
1
)
,
P
(
2
)
,
…
P
(
k
)
{\displaystyle {\text{P}}^{(1)},{\text{P}}^{(2)},\ldots {\text{P}}^{(k)}}
as linear functions of the
k
{\displaystyle k}
expressions
(
m
1
s
μ
1
s
m
2
s
μ
2
s
m
3
s
μ
3
s
…
)
{\displaystyle (m_{1s}^{\mu _{1s}}m_{2s}^{\mu _{2s}}m_{3s}^{\mu _{3s}}\ldots )}
,
s
=
1
,
2
,
…
k
{\displaystyle s=1,2,\ldots k}
, and the numbers
θ
s
t
{\displaystyle \theta _{st}}
occurring therein possess row and column symmetry. By solving
k
{\displaystyle k}
linear equations we similarly express the latter functions as linear functions of the former, and this table will also be symmetrical.
Theorem .—“The symmetric function
(
m
1
s
μ
1
s
m
2
s
μ
2
s
m
3
s
μ
3
s
…
)
{\displaystyle (m_{1s}^{\mu _{1s}}m_{2s}^{\mu _{2s}}m_{3s}^{\mu _{3s}}\ldots )}
whose partition is a specification of a separation of the function symbolized by
(
l
1
λ
1
l
2
λ
2
l
3
λ
3
…
)
{\displaystyle (l_{1}^{\lambda _{1}}l_{2}^{\lambda _{2}}l_{3}^{\lambda _{3}}\ldots )}
is expressible as a linear function of symmetric functions symbolized by separations of
(
l
1
λ
1
l
2
λ
2
l
3
λ
3
…
)
{\displaystyle (l_{1}^{\lambda _{1}}l_{2}^{\lambda _{2}}l_{3}^{\lambda _{3}}\ldots )}
and a symmetrical table may be thus formed.” It is now to be remarked that the partition
(
l
1
λ
1
l
2
λ
2
l
3
λ
3
…
)
{\displaystyle (l_{1}^{\lambda _{1}}l_{2}^{\lambda _{2}}l_{3}^{\lambda _{3}}\ldots )}
can be derived from
(
m
1
s
μ
1
s
m
2
s
μ
2
s
m
3
s
μ
3
s
…
)
{\displaystyle (m_{1s}^{\mu _{1s}}m_{2s}^{\mu _{2s}}m_{3s}^{\mu _{3s}}\ldots )}
by substituting for the numbers
m
1
s
,
m
2
s
,
m
3
s
,
…
{\displaystyle m_{1s},m_{2s},m_{3s},\ldots }
certain partitions of those numbers (vide the definition of the specification of a separation).
Hence the theorem of expressibility enunciated above. A new statement of the law of reciprocity can be arrived at as follows:—Since.
P
(
s
)
=
μ
1
s
!
μ
2
s
!
μ
3
s
!
…
∑
(
J
1
)
j
1
(
J
2
)
j
2
(
J
3
)
j
3
…
j
1
!
j
2
!
j
3
!
…
,
{\displaystyle {\text{P}}^{(s)}=\mu _{1s}!\mu _{2s}!\mu _{3s}!\ldots \sum {\frac {({\text{J}}_{1})^{j_{1}}({\text{J}}_{2})^{j_{2}}({\text{J}}_{3})^{j_{3}}\ldots }{j_{1}!j_{2}!j_{3}!\ldots }},}
where
(
J
1
)
j
1
(
J
2
)
j
2
(
J
3
)
j
3
…
{\displaystyle ({\text{J}}_{1})^{j_{1}}({\text{J}}_{2})^{j_{2}}({\text{J}}_{3})^{j_{3}}\ldots }
is a separation of
(
l
1
λ
1
l
2
λ
2
l
3
λ
3
…
)
{\displaystyle (l_{1}^{\lambda _{1}}l_{2}^{\lambda _{2}}l_{3}^{\lambda _{3}}\ldots )}
of specification
(
m
1
s
μ
1
s
m
2
s
μ
2
s
m
3
s
μ
3
s
…
)
,
{\displaystyle (m_{1s}^{\mu _{1s}}m_{2s}^{\mu _{2s}}m_{3s}^{\mu _{3s}}\ldots ),}
placing
s
{\displaystyle s}
under the summation sign to denote the specification involved,
μ
1
s
!
μ
2
s
!
μ
3
s
…
∑
s
(
J
1
)
j
1
(
J
2
)
j
2
(
J
3
)
j
3
…
j
1
!
j
2
!
j
3
!
…
=
∑
t
=
1
t
=
k
θ
s
t
(
m
1
s
μ
1
s
m
2
s
μ
2
s
m
3
s
μ
3
s
…
)
,
μ
15
!
μ
2
t
!
μ
3
t
!
…
∑
t
(
J
1
)
j
1
(
J
2
)
j
2
(
J
3
)
j
3
…
j
1
!
j
2
!
j
3
…
=
∑
s
=
1
s
=
k
θ
t
s
(
m
1
s
μ
1
s
m
2
s
μ
2
s
m
3
s
μ
3
s
…
)
,
{\displaystyle {\begin{aligned}\mu _{1s}!\mu _{2s}!\mu _{3s}\ldots &\sum _{s}{\frac {({\text{J}}_{1})^{j_{1}}({\text{J}}_{2})^{j_{2}}({\text{J}}_{3})^{j_{3}}\ldots }{j_{1}!j_{2}!j_{3}!\ldots }}=\sum _{t=1}^{t=k}\theta _{st}(m_{1s}^{\mu _{1s}}m_{2s}^{\mu _{2s}}m_{3s}^{\mu _{3s}}\ldots ),\\\mu _{15}!\mu _{2t}!\mu _{3t}!&\ldots \sum _{t}{\frac {({\text{J}}_{1})^{j_{1}}({\text{J}}_{2})^{j_{2}}({\text{J}}_{3})^{j_{3}}\ldots }{j_{1}!j_{2}!j_{3}\ldots }}=\sum _{s=1}^{s=k}\theta _{ts}(m_{1s}^{\mu _{1s}}m_{2s}^{\mu _{2s}}m_{3s}^{\mu _{3s}}\ldots ),\end{aligned}}}
where
θ
s
t
=
θ
t
s
{\displaystyle \theta _{st}=\theta _{ts}}
.
Theorem of Symmetry. —If we form the separation function
∑
s
(
J
1
)
j
1
(
J
2
)
j
2
(
J
3
)
j
3
…
j
1
!
j
2
!
j
3
!
…
{\displaystyle \sum _{s}{\frac {({\text{J}}_{1})^{j_{1}}({\text{J}}_{2})^{j_{2}}({\text{J}}_{3})^{j_{3}}\ldots }{j_{1}!j_{2}!j_{3}!\ldots }}}
appertaining to the function
(
l
1
λ
1
l
2
λ
2
l
3
λ
3
…
)
,
{\displaystyle (l_{1}^{\lambda _{1}}l_{2}^{\lambda _{2}}l_{3}^{\lambda _{3}}\ldots ),}
each separation having a specification
(
m
1
s
μ
1
s
m
2
s
μ
2
s
m
3
s
μ
3
s
…
)
{\displaystyle (m_{1s}^{\mu _{1s}}m_{2s}^{\mu _{2s}}m_{3s}^{\mu _{3s}}\ldots )}
, multiply by
μ
1
s
!
μ
2
s
!
μ
3
s
!
…
,
{\displaystyle \mu _{1s}!\mu _{2s}!\mu _{3s}!\ldots ,}
and take therein the coefficient of the function
(
m
1
t
μ
1
t
m
2
t
μ
2
t
m
3
t
μ
3
t
…
)
,
{\displaystyle (m_{1t}^{\mu _{1t}}m_{2t}^{\mu _{2t}}m_{3t}^{\mu _{3t}}\ldots ),}
we obtain the same result as if we formed the separation function in regard to the specification
(
m
1
t
μ
1
t
m
2
t
μ
2
t
m
3
t
μ
3
t
…
)
,
{\displaystyle (m_{1t}^{\mu _{1t}}m_{2t}^{\mu _{2t}}m_{3t}^{\mu _{3t}}\ldots ),}
multiplied by
μ
1
t
!
μ
2
t
!
μ
3
t
!
…
{\displaystyle \mu _{1t}!\mu _{2t}!\mu _{3t}!\ldots }
and took therein the coefficient of the function
(
m
1
s
μ
1
s
m
2
s
μ
2
s
m
3
s
μ
3
s
…
)
.
{\displaystyle (m_{1s}^{\mu _{1s}}m_{2s}^{\mu _{2s}}m_{3s}^{\mu _{3s}}\ldots ).}
Ex. gr. , take
(
l
1
λ
1
l
2
λ
2
…
)
=
(
21
4
)
;
(
m
1
s
μ
1
s
m
2
s
μ
2
s
…
)
=
(
321
)
;
(
m
1
t
μ
1
t
m
2
t
μ
2
t
…
)
=
(
31
3
)
;
{\displaystyle (l_{1}^{\lambda _{1}}l_{2}^{\lambda _{2}}\ldots )=(21^{4});(m_{1s}^{\mu _{1s}}m_{2s}^{\mu _{2s}}\ldots )=(321);(m_{1t}^{\mu _{1t}}m_{2t}^{\mu _{2t}}\ldots )=(31_{3});}
we find
(
21
)
(
1
2
)
(
1
)
+
(
1
3
)
(
2
)
(
1
)
=
…
+
13
(
31
3
)
+
…
,
(
21
)
(
1
)
3
=
…
+
13
(
321
)
+
…
{\displaystyle {\begin{aligned}(21)(1^{2})(1)+(1^{3})(2)(1)&=\ldots +13(31^{3})+\ldots ,\\(21)(1)^{3}&=\ldots +13(321)+\ldots \end{aligned}}}
The Differential Operators .—Starting with the relation
(
1
+
α
1
x
)
(
1
+
α
2
x
)
…
(
1
+
a
n
x
)
=
1
+
a
1
x
+
a
2
x
2
+
…
+
a
n
x
n
{\displaystyle (1+\alpha _{1}x)(1+\alpha _{2}x)\ldots (1+a_{n}x)=1+a_{1}x+a_{2}x^{2}+\ldots +a_{n}x^{n}}
multiply each side by
1
+
μ
x
,
{\displaystyle 1+\mu x,}
thus introducing a new quantity
μ
;
{\displaystyle \mu ;}
we obtain
(
1
+
a
1
x
)
(
1
+
a
2
x
)
…
(
1
+
a
n
x
)
(
1
+
μ
x
)
=
1
+
(
a
1
+
μ
)
x
+
(
a
2
+
μ
a
1
)
x
2
+
…
{\displaystyle (1+a_{1}x)(1+a_{2}x)\ldots (1+a_{n}x)(1+\mu x)=1+(a_{1}+\mu )x+(a_{2}+\mu a_{1})x^{2}+\ldots }
so that
f
(
a
1
,
a
2
,
a
3
,
…
a
n
)
=
f
,
{\displaystyle f(a_{1},a_{2},a_{3},\ldots a_{n})=f,}
a rational integral function of the elementary functions, is converted into
f
(
a
1
+
μ
,
a
2
+
μ
a
1
,
…
a
n
+
μ
a
n
−
1
)
=
f
+
μ
d
1
f
+
μ
2
2
!
d
1
2
¯
f
+
μ
3
3
!
d
1
3
¯
f
+
…
{\displaystyle f(a_{1}+\mu ,a_{2}+\mu a_{1},\ldots a_{n}+\mu a_{n-1})=f+\mu d_{1}f+{\frac {\mu ^{2}}{2!}}{\overline {d_{1}^{2}}}f+{\frac {\mu ^{3}}{3!}}{\overline {d_{1}^{3}}}f+\ldots }
where
d
1
=
δ
δ
a
1
+
a
1
δ
δ
a
2
+
a
2
δ
δ
a
3
+
…
+
a
n
−
1
δ
δ
a
n
{\displaystyle d_{1}={\frac {\delta }{\delta a_{1}}}+a_{1}{\frac {\delta }{\delta a_{2}}}+a_{2}{\frac {\delta }{\delta a_{3}}}+\ldots +a_{n-1}{\frac {\delta }{\delta a_{n}}}}
and
d
1
s
¯
{\displaystyle {\overline {d_{1}^{s}}}}
denotes, not
s
{\displaystyle s}
successive operations of
d
1
,
{\displaystyle d_{1},}
but the operator of order
s
{\displaystyle s}
obtained by raising
d
1
{\displaystyle d_{1}}
to the
s
t
h
{\displaystyle s^{th}}
power symbolically as in Taylor’s theorem in the Differential Calculus.
Write also
1
s
!
d
1
s
¯
=
D
,
{\displaystyle {\frac {1}{s!}}{\overline {d_{1}^{s}}}={\text{D}},}
so that
f
(
a
1
+
μ
,
a
2
+
μ
a
1
,
…
a
n
+
μ
a
n
−
1
)
=
f
+
μ
D
1
f
+
μ
2
D
2
f
+
μ
3
D
3
f
+
…
.
{\displaystyle f(a_{1}+\mu ,a_{2}+\mu a_{1},\ldots a_{n}+\mu a_{n-1})=f+\mu {\text{D}}_{1}f+\mu ^{2}{\text{D}}_{2}f+\mu ^{3}{\text{D}}_{3}f+\ldots .}
The introduction of the quantity
μ
{\displaystyle \mu }
converts the symmetric function
(
λ
1
λ
2
λ
3
…
)
{\displaystyle (\lambda _{1}\lambda _{2}\lambda _{3}\ldots )}
into
(
λ
1
λ
2
λ
3
+
…
)
+
μ
λ
1
(
λ
2
λ
3
…
)
+
μ
λ
2
(
λ
1
λ
3
…
)
+
μ
λ
3
(
λ
1
λ
2
…
)
+
…
.
{\displaystyle (\lambda _{1}\lambda _{2}\lambda _{3}+\ldots )+\mu ^{\lambda _{1}}(\lambda _{2}\lambda _{3}\ldots )+\mu ^{\lambda _{2}}(\lambda _{1}\lambda _{3}\ldots )+\mu ^{\lambda _{3}}(\lambda _{1}\lambda _{2}\ldots )+\ldots .}
Hence, if
f
(
a
1
,
a
2
,
…
a
n
)
=
(
λ
1
λ
2
λ
3
…
)
,
{\displaystyle f(a_{1},a_{2},\ldots a_{n})=(\lambda _{1}\lambda _{2}\lambda _{3}\ldots ),}
(
λ
1
λ
2
λ
3
…
)
+
μ
λ
1
(
λ
2
λ
3
…
)
+
μ
λ
2
(
λ
1
λ
3
…
)
+
μ
λ
3
(
λ
1
λ
2
…
)
+
…
{\displaystyle (\lambda _{1}\lambda _{2}\lambda _{3}\ldots )+\mu ^{\lambda _{1}}(\lambda _{2}\lambda _{3}\ldots )+\mu ^{\lambda _{2}}(\lambda _{1}\lambda _{3}\ldots )+\mu ^{\lambda _{3}}(\lambda _{1}\lambda _{2}\ldots )+\ldots }
=
(
1
+
μ
D
1
+
μ
2
D
2
+
μ
3
D
3
+
…
)
(
λ
1
λ
2
λ
3
…
)
.
{\displaystyle =(1+\mu {\text{D}}_{1}+\mu ^{2}{\text{D}}_{2}+\mu ^{3}{\text{D}}_{3}+\ldots )(\lambda _{1}\lambda _{2}\lambda _{3}\ldots ).}
Comparing coefficients of like powers of
μ
{\displaystyle \mu }
we obtain
D
λ
1
(
λ
1
λ
2
λ
3
…
)
=
(
λ
2
λ
3
…
)
,
{\displaystyle {\text{D}}\lambda _{1}(\lambda _{1}\lambda _{2}\lambda _{3}\ldots )=(\lambda _{2}\lambda _{3}\ldots ),}
while
D
s
(
λ
1
λ
2
λ
3
…
)
=
0
{\displaystyle {\text{D}}_{s}(\lambda _{1}\lambda _{2}\lambda _{3}\ldots )=0}
unless the partition
(
λ
1
λ
2
λ
3
…
)
{\displaystyle (\lambda _{1}\lambda _{2}\lambda _{3}\ldots )}
contains a part
s
.
{\displaystyle s.}
Further, if
D
λ
1
D
λ
2
{\displaystyle {\text{D}}_{\lambda _{1}}{\text{D}}_{\lambda _{2}}}
denote successive operations of
D
λ
1
{\displaystyle {\text{D}}_{\lambda _{1}}}
and
D
λ
2
,
{\displaystyle {\text{D}}_{\lambda _{2}},}
D
λ
1
D
λ
2
(
λ
1
λ
2
λ
2
…
)
=
(
λ
3
…
)
,
{\displaystyle {\text{D}}\lambda _{1}{\text{D}}\lambda _{2}(\lambda _{1}\lambda _{2}\lambda _{2}\ldots )=(\lambda _{3}\ldots ),}
and the operations are evidently commutative.
Also
D
p
1
π
1
D
p
2
π
2
D
p
3
π
3
…
(
p
1
π
1
p
2
π
2
p
3
π
3
…
)
=
1
,
{\displaystyle {\text{D}}_{p_{1}}^{\pi _{1}}{\text{D}}_{p_{2}}^{\pi _{2}}{\text{D}}_{p_{3}}^{\pi _{3}}\ldots (p_{1}^{\pi _{1}}p_{2}^{\pi _{2}}p_{3}^{\pi _{3}}\ldots )=1,}
and the law of operation of the operators
D
{\displaystyle {\text{D}}}
upon a monomial symmetric function is clear.
We have obtained the equivalent operations
1
+
μ
D
1
+
μ
2
D
2
+
μ
3
D
3
+
…
=
e
x
p
¯
μ
d
1
{\displaystyle 1+\mu {\text{D}}_{1}+\mu ^{2}{\text{D}}_{2}+\mu ^{3}{\text{D}}_{3}+\ldots ={\overline {exp}}\mu d_{1}}
where
e
x
p
¯
{\displaystyle {\overline {exp}}}
denotes (by the rule over
e
x
p
{\displaystyle exp}
) that the multiplication of operators is symbolic as in Taylor’s theorem.
d
1
s
{\displaystyle d_{1}^{s}}
denotes, in fact, an operator of order
s
,
{\displaystyle s,}
but we may transform the right-hand side so that we are only concerned with the successive performance of linear operations. For this purpose write
a
s
=
∂
a
s
+
a
1
∂
a
s
+
1
+
a
2
∂
a
s
+
2
+
…
.
{\displaystyle a_{s}=\partial _{a_{s}}+a_{1}\partial _{a_{s+1}}+a_{2}\partial _{a_{s+2}}+\ldots .}
It has been shown (vide ” Memoir on Symmetric Functions of the Roots of Systems of Equations,” Phil. Trans. 1890, p. 490) that
e
x
p
¯
(
m
1
d
1
+
m
2
d
2
+
m
3
d
3
+
…
)
=
e
x
p
(
M
1
d
1
+
M
2
d
2
+
M
3
d
3
+
…
)
,
{\displaystyle {\overline {exp}}(m_{1}d_{1}+m_{2}d_{2}+m_{3}d_{3}+\ldots )=exp(M_{1}d_{1}+M_{2}d_{2}+M_{3}d_{3}+\ldots ),}
where now the multiplications on the dexter denote successive operations, provided that
e
x
p
(
M
1
ξ
+
M
2
ξ
2
+
M
3
ξ
3
+
…
)
=
1
+
m
1
ξ
+
m
2
ξ
2
+
m
3
ξ
3
+
…
,
{\displaystyle exp({\text{M}}_{1}\xi +{\text{M}}_{2}\xi ^{2}+{\text{M}}_{3}\xi ^{3}+\ldots )=1+m_{1}\xi +m_{2}\xi ^{2}+m_{3}\xi ^{3}+\ldots ,}
ξ
{\displaystyle \xi }
being an undetermined algebraic quantity.
Hence we derive the particular cases
e
x
p
¯
d
1
=
e
x
p
(
d
1
−
1
2
d
2
+
1
3
d
3
−
…
)
;
{\displaystyle {\overline {exp}}d_{1}=exp(d_{1}-{\frac {1}{2}}d_{2}+{\frac {1}{3}}d_{3}-\ldots );}
e
x
p
¯
μ
d
1
=
e
x
p
(
μ
d
1
−
1
2
μ
2
d
2
+
1
3
μ
3
d
3
−
…
)
,
{\displaystyle {\overline {exp}}\mu d_{1}=exp(\mu d_{1}-{\frac {1}{2}}\mu ^{2}d_{2}+{\frac {1}{3}}\mu ^{3}d_{3}-\ldots ),}
and we can express
D
s
{\displaystyle {\text{D}}_{s}}
in terms of
d
1
,
d
2
,
d
3
,
…
,
{\displaystyle d_{1},d_{2},d_{3},\ldots ,}
products denoting successive operations, by the same law which expresses the elementary function
a
s
{\displaystyle a_{s}}
in terms of the sums of powers
s
1
,
s
2
,
s
3
,
…
{\displaystyle s_{1},s_{2},s_{3},\ldots }
Further, we can express
d
s
{\displaystyle d_{s}}
in terms of
D
1
,
D
2
,
D
3
,
…
{\displaystyle {\text{D}}_{1},{\text{D}}_{2},{\text{D}}_{3},\ldots }
by the same law which expresses the power function
s
,
{\displaystyle s,}
in terms of the elementary functions
a
1
,
a
2
,
a
3
,
…
{\displaystyle a_{1},a_{2},a_{3},\ldots }
Operation of
D
s
{\displaystyle {\text{D}}_{s}}
upon a Product of Symmetric Functions .—Suppose
f
{\displaystyle f}
to be a product of symmetric functions
f
1
f
2
…
f
m
.
{\displaystyle f_{1}f_{2}\ldots f_{m}.}
If in the identity
f
=
f
1
f
2
…
f
m
{\displaystyle f=f_{1}f_{2}\ldots f_{m}}
we introduce a new root
μ
{\displaystyle \mu }
we change
a
s
{\displaystyle a_{s}}
into
a
s
+
μ
a
s
−
1
,
{\displaystyle a_{s}+\mu a_{s-1},}
and we obtain
(
1
+
μ
D
1
+
μ
2
D
2
+
…
+
μ
s
D
s
+
…
)
f
=
(
1
+
μ
D
1
+
μ
2
D
2
+
…
+
μ
s
D
s
+
…
)
f
1
×
(
1
+
μ
D
1
+
μ
2
D
2
+
…
+
μ
s
D
s
+
…
)
f
2
×
⋅
⋅
⋅
⋅
⋅
×
(
1
+
μ
D
1
+
μ
2
D
2
+
…
+
μ
s
D
s
+
…
)
f
m
{\displaystyle {\begin{aligned}(1&+\mu {\text{D}}_{1}+\mu ^{2}{\text{D}}_{2}+\ldots +\mu ^{s}{\text{D}}_{s}+\ldots )f\\=(1&+\mu {\text{D}}_{1}+\mu ^{2}{\text{D}}_{2}+\ldots +\mu ^{s}{\text{D}}_{s}+\ldots )f_{1}\\\times \,(1&+\mu {\text{D}}_{1}+\mu ^{2}{\text{D}}_{2}+\ldots +\mu ^{s}{\text{D}}_{s}+\ldots )f_{2}\\\times \,\quad &\cdot \qquad \quad \;\cdot \qquad \quad \;\cdot \qquad \quad \;\cdot \qquad \quad \;\cdot \\\times \,(1&+\mu {\text{D}}_{1}+\mu ^{2}{\text{D}}_{2}+\ldots +\mu ^{s}{\text{D}}_{s}+\ldots )f_{m}\end{aligned}}}
and now expanding and equating coefficients of like powers of
μ
{\displaystyle \mu }
D
1
f
=
Σ
(
D
1
f
1
)
f
2
f
3
…
f
m
,
D
2
f
=
Σ
(
D
2
f
1
)
f
2
f
3
…
f
m
+
Σ
(
D
1
f
1
)
(
D
1
f
2
)
f
3
…
f
m
,
D
3
f
=
Σ
(
D
3
f
1
)
f
2
f
3
…
f
m
+
Σ
(
D
2
f
1
)
(
D
1
f
2
)
f
3
…
f
m
+
Σ
(
D
3
f
1
)
f
2
f
3
…
f
m
,
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
{\displaystyle {\begin{aligned}&{\text{D}}_{1}f=\Sigma ({\text{D}}_{1}f_{1})f_{2}f_{3}\ldots f_{m},\\&{\text{D}}_{2}f=\Sigma ({\text{D}}_{2}f_{1})f_{2}f_{3}\ldots f_{m}+\Sigma ({\text{D}}_{1}f_{1})({\text{D}}_{1}f_{2})f_{3}\ldots f_{m},\\&{\text{D}}_{3}f=\Sigma ({\text{D}}_{3}f_{1})f_{2}f_{3}\ldots f_{m}+\Sigma ({\text{D}}_{2}f_{1})({\text{D}}_{1}f_{2})f_{3}\ldots f_{m}+\Sigma ({\text{D}}_{3}f_{1})f_{2}f_{3}\ldots f_{m},\\&\cdot \qquad \quad \;\;\cdot \qquad \quad \;\cdot \qquad \quad \;\;\cdot \qquad \quad \;\;\cdot \qquad \quad \;\;\cdot \qquad \quad \;\cdot \qquad \quad \;\cdot \qquad \quad \;\;\cdot \end{aligned}}}
the summation in a term covering every distribution of the operators of the type presenting itself in the term.
Writing these results
D
1
f
=
D
(
1
)
f
,
D
2
f
=
D
(
2
)
f
+
D
(
1
2
)
f
,
D
3
f
=
D
(
3
)
f
+
D
(
2
1
)
f
+
D
(
1
2
)
f
,
{\displaystyle {\begin{aligned}&{\text{D}}_{1}f={\text{D}}_{(1)}f,\\&{\text{D}}_{2}f={\text{D}}_{(2)}f+{\text{D}}_{(1^{2})}f,\\&{\text{D}}_{3}f={\text{D}}_{(3)}f+{\text{D}}_{(2^{1})}f+{\text{D}}_{(1^{2})}f,\end{aligned}}}