we may write in general
D
s
f
=
Σ
D
(
p
1
p
2
p
3
…
)
f
,
{\displaystyle {\text{D}}_{s}f=\Sigma {\text{D}}(p_{1}p_{2}p_{3}\ldots )f,}
the summation being for every partition
(
p
1
p
2
p
3
…
)
{\displaystyle (p_{1}p_{2}p_{3}\ldots )}
of
s
,
{\displaystyle s,}
and
D
(
p
1
p
2
p
3
…
)
f
{\displaystyle {\text{D}}(p_{1}p_{2}p_{3}\ldots )f}
being
=
Σ
(
D
p
1
f
1
)
(
D
p
2
f
2
)
(
D
p
3
f
3
)
f
4
…
f
m
.
{\displaystyle =\Sigma ({\text{D}}p_{1}f_{1})({\text{D}}p_{2}f_{2})({\text{D}}p_{3}f_{3})f_{4}\ldots f_{m}.}
Ex. gr. To operate with
D
2
{\displaystyle {\text{D}}_{2}}
upon
(
21
3
)
(
21
4
)
(
1
5
)
,
{\displaystyle (21^{3})(21^{4})(1^{5}),}
we have
D
(
2
)
f
=
(
1
3
)
(
21
4
)
(
1
5
)
+
(
21
3
)
(
1
4
)
(
1
5
)
D
(
1
2
)
f
=
(
12
2
)
(
21
3
)
(
1
5
)
+
(
21
3
)
(
21
3
)
(
1
4
)
+
(
21
2
)
(
21
4
)
(
1
4
)
,
{\displaystyle {\begin{aligned}{\text{D}}_{(2)}f&=(1^{3})(21^{4})(1^{5})+(21^{3})(1^{4})(1^{5})\\{\text{D}}_{(1^{2})}f&=(12^{2})(21^{3})(1^{5})+(21^{3})(21^{3})(1^{4})+(21^{2})(21^{4})(1^{4}),\end{aligned}}}
and hence
D
2
f
=
(
21
4
)
(
1
5
)
(
1
3
)
+
(
21
3
)
(
1
5
)
(
1
4
)
+
(
21
3
)
(
21
2
)
(
1
5
)
+
(
21
3
)
2
(
1
4
)
+
(
21
4
)
(
21
2
)
(
1
4
)
,
{\displaystyle {\begin{aligned}{\text{D}}_{2}f=(21^{4})(1^{5})(1^{3})+(21^{3})(1^{5})(1^{4})+(&21^{3})(21^{2})(1^{5})+(21^{3})^{2}(1^{4})\\&+(21^{4})(21^{2})(1^{4}),\end{aligned}}}
Application to Symmetric Function Multiplication .—An example will explain this. Suppose we wish to find the coefficient of
(
52
4
1
3
)
{\displaystyle (52^{4}1^{3})}
in the product
(
21
3
)
(
21
4
)
(
1
5
)
{\displaystyle (21^{3})(21^{4})(1^{5})}
.
Write
(
21
3
)
(
21
4
)
(
1
5
)
=
…
+
A
(
52
4
)
(
1
3
)
+
…
;
{\displaystyle (21^{3})(21^{4})(1^{5})=\ldots +{\text{A}}(52^{4})(1^{3})+\ldots ;}
then
D
5
D
2
4
D
1
3
(
21
3
)
(
21
4
)
(
1
5
)
=
A
;
{\displaystyle {\text{D}}_{5}{\text{D}}_{2}^{4}{\text{D}}_{1}^{3}(21^{3})(21^{4})(1^{5})={\text{A}};}
every other term disappearing by the fundamental property of
D
s
.
{\displaystyle {\text{D}}_{s}.}
Since
D
5
(
21
3
)
(
21
4
)
(
1
5
)
=
(
1
3
)
(
1
4
)
(
1
4
)
,
{\displaystyle {\text{D}}_{5}(21^{3})(21^{4})(1^{5})=(1^{3})(1^{4})(1^{4}),}
we have:—
D
2
4
D
1
3
(
1
4
)
(
1
4
)
(
1
3
)
=
A
D
2
3
D
1
3
{
(
1
3
)
(
1
3
)
(
1
3
)
+
2
(
1
4
)
(
1
3
)
(
1
2
)
}
=
A
D
2
2
D
1
3
{
5
(
1
3
)
(
1
2
)
(
1
2
)
+
2
(
1
4
)
(
1
2
)
(
1
)
+
2
(
1
3
)
(
1
3
)
(
1
)
}
=
A
D
2
D
1
3
{
12
(
1
2
)
(
1
2
)
(
1
)
+
7
(
1
3
)
(
1
)
(
1
)
+
2
(
1
4
)
(
1
)
+
6
(
1
3
)
(
1
2
)
}
=
A
D
D
1
3
12
(
1
)
3
=
A
,
{\displaystyle {\begin{aligned}&{\text{D}}_{2}^{4}{\text{D}}_{1}^{3}(1^{4})(1^{4})(1^{3})={\text{A}}\\&{\text{D}}_{2}^{3}{\text{D}}_{1}^{3}\{(1^{3})(1^{3})(1^{3})+2(1^{4})(1^{3})(1^{2})\}={\text{A}}\\&{\text{D}}_{2}^{2}{\text{D}}_{1}^{3}\{5(1^{3})(1^{2})(1^{2})+2(1^{4})(1^{2})(1)+2(1^{3})(1^{3})(1)\}={\text{A}}\\&{\text{D}}_{2}{\text{D}}_{1}^{3}\{12(1^{2})(1^{2})(1)+7(1^{3})(1)(1)+2(1^{4})(1)+6(1^{3})(1^{2})\}={\text{A}}\\&{\phantom {{\text{D}}\,}}{\text{D}}_{1}^{3}12(1)^{3}={\text{A}},\end{aligned}}}
where ultimately disappearing terms have been struck out. Finally
A
=
6
⋅
12
=
72.
{\displaystyle {\text{A}}=6\cdot 12=72.}
The operator
d
1
=
a
0
δ
a
1
+
a
1
δ
a
2
+
a
2
δ
a
3
+
…
{\displaystyle d_{1}=a_{0}\delta a_{1}+a_{1}\delta a_{2}+a_{2}\delta a_{3}+\ldots }
which is satisfied by every symmetric fraction whose partition contains no unit (called by Cayley non-unitary symmetric functions ), is of particular importance in algebraic theories. This arises from the circumstance that the general operator
λ
0
ι
a
0
δ
a
1
+
λ
1
a
1
δ
a
2
+
λ
2
a
2
δ
a
3
+
…
{\displaystyle \lambda _{0\iota }a_{0}\delta a_{1}+\lambda _{1}a_{1}\delta a_{2}+\lambda _{2}a_{2}\delta a_{3}+\ldots }
is transformed into the operator
d
1
{\displaystyle d_{1}}
by the substitution
(
a
0
,
a
1
,
a
2
,
…
a
s
,
…
)
=
(
a
0
,
λ
0
a
1
,
λ
0
λ
1
a
2
,
…
,
λ
0
λ
1
…
λ
s
−
1
a
s
,
…
)
,
{\displaystyle (a_{0},a_{1},a_{2},\ldots a_{s},\ldots )=(a_{0},\lambda _{0}a_{1},\lambda _{0}\lambda _{1}a_{2},\ldots ,\lambda _{0}\lambda _{1}\ldots \lambda _{s-1}a_{s},\ldots ),}
so that the theory of the general operator is coincident with that of the particular operator
d
1
.
{\displaystyle d_{1}.}
For example, the theory of invariants may be regarded as depending upon the consideration of the symmetric functions of the differences of the roots of the equation
a
0
x
n
−
1
!
(
n
1
)
a
1
x
n
−
1
+
(
n
2
)
a
2
x
n
−
2
−
…
=
0
;
{\displaystyle a_{0}x^{n}-1!{\tbinom {n}{1}}a_{1}x^{n-1}+{\tbinom {n}{2}}a_{2}x^{n-2}-\ldots =0;}
and such functions satisfy the differential equation
a
0
δ
a
1
+
2
a
1
δ
a
2
+
3
a
2
δ
a
3
+
…
+
n
a
n
−
1
δ
a
n
=
0.
{\displaystyle a_{0}\delta a_{1}+2a_{1}\delta a_{2}+3a_{2}\delta a_{3}+\ldots +na_{n-1}\delta a_{n}=0.}
For such functions remain unaltered when each root receives the same infinitesimal increment
h
;
{\displaystyle h;}
but writing
x
−
h
{\displaystyle x-h}
for
x
{\displaystyle x}
causes
a
0
,
a
1
,
a
2
,
a
3
,
…
{\displaystyle a_{0},a_{1},a_{2},a_{3},\ldots }
to become respectively
a
0
,
a
1
+
h
a
0
,
a
2
+
2
h
a
1
,
a
3
+
3
h
a
2
,
…
{\displaystyle a_{0},a_{1}+ha_{0},a_{2}+2ha_{1},a_{3}+3ha_{2},\ldots }
and
f
(
a
0
,
a
1
,
a
2
,
a
3
,
…
)
{\displaystyle f(a_{0},a_{1},a_{2},a_{3},\ldots )}
becomes
f
+
h
(
a
0
δ
a
1
+
2
a
1
δ
a
2
+
3
a
2
δ
a
3
+
…
)
f
,
{\displaystyle f+h(a_{0}\delta _{a1}+2a_{1}\delta _{a2}+3a_{2}\delta _{a3}+\ldots )f,}
and hence the functions satisfy the differential equation. The important result is that the theory of invariants is from a certain point of view coincident with the theory of non-unitary symmetric functions of the roots of
a
0
x
n
−
a
1
x
n
−
1
+
a
2
x
n
−
2
−
…
=
0
,
{\displaystyle a_{0}x^{n}-a_{1}x^{n-1}+a_{2}x^{n-2}-\ldots =0,}
are symmetric functions of differences of the roots of
a
0
x
n
−
1
!
(
n
1
)
a
1
x
n
−
1
+
2
!
(
n
2
)
a
2
x
n
−
2
−
…
=
0
;
{\displaystyle a_{0}x^{n}-1!{\tbinom {n}{1}}a_{1}x^{n-1}+2!{\tbinom {n}{2}}a_{2}x^{n-2}-\ldots =0;}
and on the other hand that symmetric functions of the differences of the roots of
a
0
x
n
−
(
n
1
)
a
1
x
n
−
1
+
(
n
2
)
a
2
x
n
−
2
−
…
=
0
,
{\displaystyle a_{0}x^{n}-{\tbinom {n}{1}}a_{1}x^{n-1}+{\tbinom {n}{2}}a_{2}x^{n-2}-\ldots =0,}
are non-unitary symmetric functions of the roots of
a
0
x
n
−
a
1
1
!
x
n
−
1
+
a
2
2
!
x
n
−
2
−
…
=
0.
{\displaystyle a_{0}x^{n}-{\frac {a_{1}}{1!}}x^{n-1}+{\frac {a_{2}}{2!}}x^{n-2}-\ldots =0.}
An important notion in the theory of linear operators in general is that of MacMahon’s multilinear operator (“Theory of a Multilinear partial Differential Operator with Applications to the Theories of Invariants and Reciprocants,” Proc. Lond. Math. Soc. t. xviii. (1886), pp. 61-88). It is defined as having four elements, and is written
(
μ
,
ν
;
m
,
n
)
{\displaystyle (\mu ,\nu ;m,n)}
=
1
m
[
μ
a
0
m
δ
a
n
+
(
μ
+
ν
)
m
!
(
m
−
1
)
!
1
!
a
0
m
−
1
a
1
δ
a
n
+
1
+
(
μ
+
2
ν
)
{
m
!
(
m
−
1
)
!
1
!
a
0
m
−
1
a
2
+
m
!
(
m
−
2
)
!
2
!
a
0
m
−
2
a
1
2
}
δ
a
n
+
2
+
(
μ
+
3
ν
)
{
m
!
(
m
−
1
)
!
1
!
a
0
m
−
1
a
3
+
m
!
(
m
−
2
)
!
1
!
1
!
a
0
m
−
2
a
1
a
2
+
m
!
(
m
−
3
)
!
3
!
a
0
m
−
3
a
0
3
}
δ
a
n
+
3
+
…
]
,
{\displaystyle {\begin{aligned}={\frac {1}{m}}{\bigg [}&\mu a_{0}^{m}\delta _{an}+(\mu +\nu ){\frac {m!}{(m-1)!1!}}a_{0}^{m-1}a_{1}\delta _{an+1}\\&+(\mu +2\nu ){\bigg \{}{\frac {m!}{(m-1)!1!}}a_{0}^{m-1}a_{2}+{\frac {m!}{(m-2)!2!}}a_{0}^{m-2}a_{1}^{2}{\bigg \}}\delta _{an+2}\\&+(\mu +3\nu ){\bigg \{}{\frac {m!}{(m-1)!1!}}a_{0}^{m-1}a_{3}+{\frac {m!}{(m-2)!1!1!}}a_{0}^{m-2}a_{1}a_{2}\\&\qquad \qquad \qquad \qquad \qquad \qquad \quad \;\;+{\frac {m!}{(m-3)!3!}}a_{0}^{m-3}a_{0}^{3}{\bigg \}}\delta _{an+3}\\&+\ldots {\bigg ]},\end{aligned}}}
the coefficient of
a
0
k
0
a
1
k
1
a
1
k
1
…
{\displaystyle a_{0}^{k_{0}}a_{1}^{k_{1}}a_{1}^{k_{1}}\ldots }
being
m
!
k
0
!
k
1
!
k
2
!
…
.
{\displaystyle {\frac {m!}{k_{0}!k_{1}!k_{2}!\ldots }}.}
The operators
a
0
δ
a
1
+
a
1
δ
a
2
+
…
,
a
0
δ
a
1
+
2
a
1
δ
a
2
+
…
{\displaystyle a_{0}\delta _{a1}+a_{1}\delta _{a2}+\ldots ,a_{0}\delta _{a1}+2a_{1}\delta _{a2}+\ldots }
are seen to be
(
1
,
0
;
1
,
1
)
{\displaystyle (1,0;1,1)}
and
(
1
,
1
;
1
,
1
)
{\displaystyle (1,1;1,1)}
respectively. Also the operator of the Theory of Pure Reciprocents (see Sylvester Lectures of the New Theory of Reciprocants , Oxford, 1888) is
(
4
,
1
;
2
,
1
)
=
1
2
{
4
a
0
2
δ
a
1
+
10
a
0
a
1
δ
a
2
+
6
(
2
a
0
a
2
+
a
1
2
)
δ
a
3
+
…
}
.
{\displaystyle (4,1;2,1)={\frac {1}{2}}{\bigg \{}4a_{0}^{2}\delta _{a1}+10a_{0}a_{1}\delta _{a2}+6(2a_{0}a_{2}+a_{1}^{2})\delta _{a3}+\ldots {\bigg \}}.}
It will be noticed that
(
μ
,
ν
;
m
,
n
)
=
μ
(
1
,
0
;
m
,
n
)
+
ν
(
0
,
1
;
m
,
n
)
.
{\displaystyle (\mu ,\nu ;m,n)=\mu (1,0;m,n)+\nu (0,1;m,n).}
The importance of the operator consists in the fact that taking any two operators of the system
(
μ
,
ν
;
m
,
n
)
;
(
μ
1
,
ν
1
;
m
1
,
n
1
)
,
{\displaystyle (\mu ,\nu ;m,n);(\mu ^{1},\nu ^{1};m^{1},n^{1}),}
the operator equivalent to
(
μ
,
ν
;
m
,
n
)
(
μ
1
,
ν
1
;
m
1
,
n
1
)
−
(
μ
1
,
ν
1
;
m
1
,
n
1
)
(
μ
,
ν
;
m
,
n
)
,
{\displaystyle (\mu ,\nu ;m,n)(\mu ^{1},\nu ^{1};m^{1},n^{1})-(\mu ^{1},\nu ^{1};m^{1},n^{1})(\mu ,\nu ;m,n),}
where
μ
1
=
(
m
1
+
m
−
1
)
{
μ
1
m
1
(
μ
+
n
1
ν
)
−
μ
m
(
μ
1
+
n
ν
1
)
}
,
ν
1
=
(
n
1
−
n
)
ν
1
ν
+
m
−
1
m
1
μ
1
ν
−
m
1
−
1
m
μ
ν
1
,
m
1
=
m
1
+
m
−
1
,
n
1
=
n
1
+
n
,
{\displaystyle {\begin{aligned}\mu _{1}&=(m^{1}+m-1){\bigg \{}{\frac {\mu ^{1}}{m^{1}}}(\mu +n^{1}\nu )-{\frac {\mu }{m}}(\mu ^{1}+n\nu ^{1}){\bigg \}},\\\nu _{1}&=(n^{1}-n)\nu ^{1}\nu +{\frac {m-1}{m^{1}}}\mu ^{1}\nu -{\frac {m^{1}-1}{m}}\mu \nu ^{1},\\m_{1}&=m^{1}+m-1,\\n_{1}&=n^{1}+n,\end{aligned}}}
and we conclude that quâ “alternation” the operators of the system form a “group.” It is thus possible to study simultaneously all the theories which depend upon operations of the group.
Symbolic Representation of Symmetric Functions .—Denote the elementary symmetric function
a
s
{\displaystyle a_{s}}
by
a
1
s
s
!
,
a
2
s
s
!
,
a
3
s
s
!
,
…
{\displaystyle {\tfrac {a_{1}^{s}}{s!}},{\tfrac {a_{2}^{s}}{s!}},{\tfrac {a_{3}^{s}}{s!}},\ldots }
at pleasure; then, taking
n
{\displaystyle n}
equal to
∞
,
{\displaystyle \infty ,}
we may write
1
+
a
1
x
+
a
2
x
2
+
…
=
(
1
+
ρ
1
x
)
(
1
+
ρ
2
x
)
…
=
e
a
1
x
=
e
a
2
x
=
e
a
3
x
=
…
{\displaystyle 1+a_{1}x+a_{2}x^{2}+\ldots =(1+\rho _{1}x)(1+\rho _{2}x)\ldots =e^{a_{1^{x}}}=e^{a_{2^{x}}}=e^{a_{3^{x}}}=\ldots }
where
a
s
=
∑
ρ
1
ρ
2
…
ρ
3
=
a
1
s
s
!
,
a
2
s
s
!
,
a
3
s
s
!
,
…
.
{\displaystyle a_{s}=\sum \rho _{1}\rho _{2}\ldots \rho _{3}={\tfrac {a_{1}^{s}}{s!}},{\tfrac {a_{2}^{s}}{s!}},{\tfrac {a_{3}^{s}}{s!}},\ldots .}
Further, let
1
+
b
1
x
+
b
2
x
2
+
…
+
b
m
x
m
=
(
1
+
σ
1
x
)
(
1
+
σ
2
x
)
…
(
1
+
σ
m
x
)
;
{\displaystyle 1+b_{1}x+b_{2}x^{2}+\ldots +b_{m}x^{m}=(1+\sigma _{1}x)(1+\sigma _{2}x)\ldots (1+\sigma _{m}x);}
so that
1
+
a
1
σ
1
+
a
2
σ
1
2
+
…
=
(
1
+
ρ
1
σ
1
)
(
1
+
ρ
2
σ
1
)
…
=
e
σ
1
a
1
,
1
+
a
1
σ
2
+
a
2
σ
2
2
+
…
=
(
1
+
ρ
1
σ
2
)
(
1
+
ρ
2
σ
2
)
…
=
e
σ
2
a
2
,
⋅
⋅
⋅
⋅
⋅
⋅
⋅
1
+
a
1
σ
m
+
a
2
σ
m
2
+
…
=
(
1
+
ρ
1
σ
m
)
(
1
+
ρ
2
σ
m
)
…
=
e
σ
m
a
m
;
{\displaystyle {\begin{aligned}1+a_{1}\sigma _{1}+a_{2}\sigma _{1}^{2}+\ldots =(1+\rho _{1}\sigma _{1})(1+\rho _{2}\sigma _{1})\ldots &=e^{\sigma _{1}a_{1}},\\1+a_{1}\sigma _{2}+a_{2}\sigma _{2}^{2}+\ldots =(1+\rho _{1}\sigma _{2})(1+\rho _{2}\sigma _{2})\ldots &=e^{\sigma _{2}a_{2}},\\\cdot \qquad \quad \;\cdot \qquad \quad \;\cdot \qquad \quad \;\cdot \qquad \quad \;\cdot \qquad \quad \;\cdot \quad &\qquad \;\cdot \\1+a_{1}\sigma _{m}+a_{2}\sigma _{m}^{2}+\ldots =(1+\rho _{1}\sigma _{m})(1+\rho _{2}\sigma _{m})\ldots &=e^{\sigma _{m}a_{m}};\end{aligned}}}
and, by multiplication,
Π
σ
(
1
+
a
1
σ
+
a
2
σ
2
+
…
)
=
Π
ρ
(
1
+
b
1
ρ
+
b
2
ρ
2
+
…
+
b
m
ρ
m
)
,
{\displaystyle \mathop {\Pi } _{\sigma }(1+a_{1}\sigma +a_{2}\sigma ^{2}+\ldots )=\mathop {\Pi } _{\rho }(1+b_{1}\rho +b_{2}\rho ^{2}+\ldots +b_{m}\rho ^{m}),}
=
e
σ
1
a
1
+
σ
2
a
2
+
.
.
+
σ
m
a
m
.
{\displaystyle =e^{\sigma _{1}a_{1}+\sigma _{2}a_{2}+..+\sigma _{m}a_{m}}.}
Denote by brackets
(
)
{\displaystyle (\;)}
and
[
]
{\displaystyle [\;]}
symmetric functions of the quantities
ρ
{\displaystyle \rho }
and
σ
{\displaystyle \sigma }
respectively. Then
1
+
a
1
[
1
]
+
a
1
2
[
1
2
]
+
a
2
[
2
]
+
a
1
3
[
1
3
]
+
a
1
a
2
[
21
]
+
a
3
[
3
]
+
…
{\displaystyle 1+a_{1}[1]+a_{1}^{2}[1^{2}]+a_{2}[2]+a_{1}^{3}[1^{3}]+a_{1}a_{2}[21]+a_{3}[3]+\ldots }
+
a
p
1
a
p
2
a
p
3
…
a
p
m
[
p
1
p
2
p
3
…
p
m
]
+
…
{\displaystyle +a_{p_{1}}a_{p_{2}}a_{p_{3}}\ldots a_{p_{m}}{\big [}p_{1}p_{2}p_{3}\ldots p_{m}{\big ]}+\ldots }
=
1
+
b
1
(
1
)
+
b
1
2
(
1
2
)
+
b
2
(
2
)
+
b
1
3
(
1
3
)
+
b
1
b
2
(
21
)
+
b
3
(
3
)
+
…
+
b
1
q
1
b
2
q
2
b
3
q
3
…
b
m
q
m
(
m
q
m
m
−
1
q
m
−
1
…
2
q
2
1
q
1
)
+
…
=
e
σ
1
a
1
+
σ
2
a
2
.
.
+
σ
m
a
m
.
{\displaystyle {\begin{aligned}&=1+b_{1}(1)+b_{1}^{2}(1^{2})+b_{2}(2)+b_{1}^{3}(1^{3})+b_{1}b_{2}(21)+b_{3}(3)+\ldots \\&\qquad \quad \;+b_{1}^{q_{1}}b_{2}^{q_{2}}b_{3}^{q_{3}}\ldots b_{m}^{q_{m}}(m^{q_{m}}m-1^{q_{m-1}}\ldots 2^{q_{2}}1^{q_{1}})+\ldots \\&=e^{\sigma _{1}a_{1}+\sigma _{2}a_{2}..+\sigma _{m}a_{m}}.\end{aligned}}}
Expanding the right-hand side by the exponential theorem, and then expressing the symmetric functions of
σ
1
,
σ
2
,
σ
3
,
…
σ
m
,
{\displaystyle \sigma _{1},\sigma _{2},\sigma _{3},\ldots \sigma _{m},}
which arise, in terms of
b
1
,
b
2
,
…
b
m
,
{\displaystyle b_{1},b_{2},\ldots b_{m},}
we obtain by comparison with the middle series the symbolical representation of all symmetric functions in brackets
(
)
{\displaystyle (\;)}
appertaining to the quantities
ρ
1
,
ρ
2
,
ρ
3
,
…
{\displaystyle \rho _{1},\rho _{2},\rho _{3},\ldots }
To obtain particular theorems the quantities
σ
1
,
σ
2
,
σ
3
,
…
σ
m
{\displaystyle \sigma _{1},\sigma _{2},\sigma _{3},\ldots \sigma _{m}}
are auxiliaries which are at our entire disposal. Thus to obtain Stroh’s theory of seminvariants put
b
1
=
σ
1
+
σ
2
+
…
+
σ
m
=
[
1
]
=
0
;
{\displaystyle b_{1}=\sigma _{1}+\sigma _{2}+\ldots +\sigma _{m}=[1]=0;}
we then obtain the expression of non-unitary symmetric functions of the quantities
ρ
{\displaystyle \rho }
as functions of differences of the symbols
a
1
,
a
2
,
a
3
,
…
{\displaystyle a_{1},a_{2},a_{3},\ldots }
Ex. gr.
b
2
2
(
2
2
)
{\displaystyle b_{2}^{2}(2^{2})}
with
m
=
2
{\displaystyle m=2}
must be a term in
e
σ
1
a
1
+
σ
2
a
2
=
e
σ
1
(
a
1
−
a
2
)
=
…
+
1
4
!
σ
1
4
(
a
1
−
a
2
)
4
+
…
,
{\displaystyle e^{\sigma _{1}a_{1}+\sigma _{2}a_{2}}=e^{\sigma _{1}(a_{1}-a_{2})}=\ldots +{\frac {1}{4!}}\sigma _{1}^{4}(a_{1}-a_{2})^{4}+\ldots ,}
and since
b
2
2
=
σ
1
4
{\displaystyle b_{2}^{2}=\sigma _{1}^{4}}
we must have
(
2
2
)
=
1
24
(
a
1
−
a
2
)
4
=
1
24
(
a
1
4
+
a
2
4
)
−
1
6
(
a
1
3
a
2
+
a
1
a
2
3
)
+
1
4
a
1
2
a
2
2
=
2
a
4
−
2
a
1
a
3
+
a
2
2
{\displaystyle {\begin{aligned}(2^{2})&={\frac {1}{24}}(a_{1}-a_{2})^{4}={\frac {1}{24}}(a_{1}^{4}+a_{2}^{4})-{\frac {1}{6}}(a_{1}^{3}a_{2}+a_{1}a_{2}^{3})+{\frac {1}{4}}a_{1}^{2}a_{2}^{2}\\&=2a_{4}-2a_{1}a_{3}+a_{2}^{2}\end{aligned}}}
as is well known.
Again, if
σ
1
,
σ
2
,
σ
3
…
σ
m
{\displaystyle \sigma _{1},\sigma _{2},\sigma _{3}\ldots \sigma _{m}}
be the
m
,
m
t
h
{\displaystyle m,m^{th}}
roots of
−
1
,
b
1
=
b
2
=
…
=
b
m
−
1
=
0
{\displaystyle -1,b_{1}=b_{2}=\ldots =b_{m-1}=0}
and
b
m
=
1
,
{\displaystyle b_{m}=1,}
leading to
1
+
(
m
)
+
(
m
2
)
+
(
m
3
)
+
…
=
e
σ
1
a
1
+
σ
2
a
2
+
.
.
+
σ
m
a
m
{\displaystyle 1+(m)+(m^{2})+(m^{3})+\ldots =e^{\sigma _{1}a_{1}+\sigma _{2}a_{2}+..+\sigma _{m}a_{m}}}
and
∴
(
m
s
)
=
1
m
s
!
(
σ
1
a
1
+
σ
2
a
2
+
…
+
σ
m
a
m
)
s
m
,
{\displaystyle \therefore (m^{s})={\frac {1}{ms!}}(\sigma _{1}a_{1}+\sigma _{2}a_{2}+\ldots +\sigma _{m}a_{m})^{sm},}