transition of the blood by what he terms an unknown route, namely, from the right ventricle by the vena arteriosa (pulmonary artery) to the lungs, and thence into the arteria venosa or pulmonary vein and left auricle and ventricle, from which, he adds afterwards, it is conveyed by the aorta to all parts of the body.[1]
Though the leading outlines, not only of the pulmonary or small but even of the great circulation, were sketched thus early by one who, though a philosopher, was attached to the church, it was only in his work De Re Anatomica, published at Venice in 1559, that Columbus formally and distinctly announced the circular course of the blood as a discovery of his own; and maintained, in addition to the imperviousness of the septum, the fact that the arteria venalis (pulmonary vein) contains, not air, but blood mixed with air brought from the lungs to the left ventricle of the heart, to be distributed through the body at large.
Soon after, views still more complete of the small or pulmonary circulation were given by Andreas Caesalpinus (1519–1603) of Arezzo, who not only maintained the analogy between the structure of the arterious vein or pulmonary artery and the aorta, and that between the venous artery or pulmonary veins and veins in general, but was the first to remark Caesalpinus.the swelling of veins below ligatures, and to infer from it a refluent motion of blood in these vessels. The discoveries of Aranzi and Eustachius in the vessels of the foetus tended at first to perplex and afterwards to elucidate some of these notions.
At length it happened that, between the years 1598 and 1600, a young Englishman, William Harvey, pursuing his anatomical studies at Padua under Fabricius, learnt from that anatomist the existence of the valves in the veins of the extremities, and undertook to ascertain the use of these valves by experimental inquiry. It is uncertain whether he Harvey.learnt from the writings of Caesalpinus the fact observed by that author of the tumescence of a vein below the ligature, but he could not fail to be aware, and indeed he shows that he was aware, of the small circulation as taught by Servetus and Columbus. Combining these facts already known, he, by a series of well-executed experiments, demonstrated clearly the existence, not only of the small, but of a general circulation from the left side of the heart by the aorta and its subdivisions, to the right side by the veins. This memorable truth was first announced in the year 1619.
It is unnecessary here to consider the arguments and facts by which Harvey defended his theory, or to notice the numerous assaults to which he was exposed, and the controversies in which his opponents wished to involve him. It is sufficient to say that, after the temporary ebullitions of spleen and envy had subsided, the doctrine of the circular motion of the blood was admitted by all enlightened and unprejudiced persons, and finally was universally adopted as affording the most satisfactory explanation of many facts in anatomical structure which were either misunderstood or entirely overlooked. The inquiries to which the investigation of the doctrine gave rise produced numerous researches on the shape and structure of the heart and its divisions, of the lungs, and of the blood-vessels and their distribution. Of this description were the researches of Nicolas Steno on the structure of the heart, the classical work of Richard Lower, the dissertation of J. N. Pechlin, the treatise of Raymond Vieussens, the work of Marcello Malpighi on the structure of the lungs, several sketches in the writings of John Mayow, and other treatises of less moment. Systematic treatises of anatomy began to assume a more instructive form, and to breathe a more philosophical spirit. The great work of Adrian Spigelius, which appeared in 1627, two years after the death of the author, contains indeed no proof that he was aware of the valuable generalization of Harvey; but in the institutions of Caspar Bartholinus, as republished and improved by his son Thomas in 1651, the anatomical descriptions and explanations are given with reference to the new doctrine. A still more unequivocal proof of the progress of correct anatomical knowledge was given in the lectures delivered by Peter Dionis, at the Jardin Royal of Paris, in 1673 and the seven following years, in which that intelligent surgeon gave most accurate demonstrations of all the parts composing the human frame, and especially of the heart, its auricles, ventricles and valves, and the large vessels connected with it and the lungs. These demonstrations, first published in 1690, were so much esteemed that they passed through seven editions in the space of thirty years, and were translated into English.
The progress of anatomical discovery continued in the meantime to advance. In the course of the 16th century Eustachius, in studying minutely the structure of the vena azygos, had recognized in the horse a white vessel full of watery fluid, connected with the internal jugular vein, on the left side of the vertebral column, corresponding accurately with the vessel since named thoracic duct. Fallopius also described vessels belonging to the liver distinct from arteries and veins; and similar vessels appear to have been noticed by Nicolaus Massa (1499–1569). The nature and properties of these vessels were, however, entirely unknown. On the 23rd of July 1622 Gaspar Aselli, professor of anatomy at Pavia, while engaged in demonstrating Aselli. the recurrent nerves in a living dog, first observed numerous white delicate filaments crossing the mesentery in all directions; and though he took them at first for nerves, the opaque white fluid which they shed quickly convinced him that they were a new order of vessels. The repetition of the experiment the following day showed that these vessels were best seen in animals recently fed; and as he traced them from the villous membrane of the intestines, and observed the valves with which they were liberally supplied, he inferred that they were genuine chyliferous vessels. By confounding them with the lymphatics, he made them proceed to the pancreas and liver—a mistake which appears to have been first rectified by Francis de le Boe. The discovery of Aselli was announced in 1627; and the following year, by means of the zealous efforts of Nicolas Peiresc, a liberal senator of Aix, the vessels were seen in the person of a felon who had eaten copiously before execution, and whose body was inspected an hour and a half after. In 1629 they were publicly demonstrated at Copenhagen by Simon Pauli, and the same year the thoracic duct was observed by Jacques Mentel (1599–1670) for the first time since it was described by Eustachius. Five years after (1634), John Wesling, professor of anatomy and surgery at Venice, gave the first delineation of the lacteals from the human subject, and evinced more accurate knowledge than his predecessors of the thoracic duct and the lymphatics. Nathaniel Highmore[2] in 1637 demonstrated unequivocally the difference between the lacteals and the mesenteric veins; and though some perplexity
- ↑ The passage of Servetus is so interesting that our readers may feel some curiosity in perusing it in the language of the author; and it is not unimportant to remark that Servetus appears to have been led to think of the course of the blood by the desire of explaining the manner in which the animal spirits were supposed to be generated:—“Vitalis spiritus in sinistro cordis ventriculo suam originem habet, juvantibus maxime pulmonibus ad ipsius perfectionem. Est spiritus tenuis, caloris vi elaboratus, flavo colore, ignea potentia, ut sit quasi ex puriore sanguine lucens, vapor substantiam continens aquae, aeris, et ignis. Generatur ex facta in pulmone commixtione inspirati aeris cum elaborato subtili sanguine, quem dexter ventriculus sinistro communicat. Fit autem communicatio haec, non per parietem cordis medium, ut vulgo creditur, sed magno artificio a dextro cordis ventriculo, longo per pulmones ductu agitatur sanguis subtilis; a pulmonibus praeparatur, flavus efficitur, et a vena arteriosa in arteriam venosam transfunditur. Deinde in ipsa arteria venosa, inspirato aeri miscetur et exspiratione a fuligine expurgatur; atque ita tandem a sinistro cordis ventriculo totum mixtum per diastolen attrahitur, apta supellex, ut fiat spiritus vitalis. Quod ita per pulmones fiat communicatio et praeparatio, docet conjunctio varia, et communicatio venae arteriosae cum arteria venosa in pulmonibus. Confirmat hoc magnitudo insignis venae arteriosae, quae nec talis nec tanta esset facta, nec tantam a corde ipso vim purissimi sanguinis in pulmones emitteret, ob solum eorum nutrimentum; nec cor pulmonibus hac ratione serviret, cum praesertim antea in embryone solerent pulmones ipsi aliunde nutriri, ob membranulas illas seu valvulas cordis, usque ad horum nativitatem; ut docet Galenus, &c. Itaque ille spiritus a sinistro cordis ventriculo arterias totius corporis deinde transfunditur, ita ut qui tenuior est, superiora petit, ubi magis elaboratur, praecipue in plexu retiformi, sub basi cerebri sito, ubi ex vitali fieri incipit animalis, ad propriam rationalis animae rationem accedens.”—De Trinitate, lib. v.
- ↑ Highmore was a physician practising at Sherborne all his life (1613–1685).