Jump to content

Page:EB1911 - Volume 01.djvu/985

From Wikisource
This page has been proofread, but needs to be validated.
932 
ANATOMY
[HISTORY

was occasioned by the discovery of the pancreatic duct by Christopher Wirsung, this mistake was corrected by Thomas Bartholinus; and the discovery by Jean Pecquet in 1647 of the common trunk of the lacteals and lymphatics, and of the course which the chyle follows to reach the blood, may be regarded as the last of the series of isolated facts by the generalization of which the extent, distribution and uses of the most important organs of the animal body were at length developed.

To complete the history of this part of anatomical science one step yet remained—the distinction between the lacteals and lymphatics, and the discovery of the termination of the latter order of vessels. The honour of this discovery is divided between George Joyliffe (1621–1658), an English anatomist, and Olaus Rudbeck (1630–1702), a young Swede. The Joyliffe.former, according to the testimony of Francis Glisson and Thomas Wharton, was aware of the distinct existence of the lymphatics in 1650, and demonstrated them as such in 1652. It is nevertheless doubtful whether he knew them much before the latter period; and it is certain that Rudbeck observed the lymphatics of the large intestines, and traced them to glands, on the 27th of January 1651, after he had, in the course of 1650, made various erroneous conjectures regarding them, and, like others, attempted to trace them to the liver. The following year he demonstrated them in presence of Queen Christina, and traced them to the thoracic duct, and the latter to the subclavian vein. Their course and distribution were still more fully investigated by Thomas Bartholinus, Wharton, J. Swammerdam and G. Blaes, the last two of whom recognized the existence of valves; while Antony Nuck of Leiden, by rectifying various errors of his predecessors, and adding several new and valuable observations, rendered this part of anatomy much more precise than formerly.

After this period anatomists began to study more minutely the organs and textures. Francis Glisson[1] distinguished himself by a minute description of the liver (1654), and a clearer account of the stomach and intestines, than had yet been given. Thomas Wharton[2] investigated the structure of the glands with particular care; and though rather prone to indulge in fanciful generalization, he developed some interesting views of these organs; while Walter Charlton (1619–1707), who appears to have been a person of great genius, though addicted to hypothesis, made some good remarks on the communication of the arteries with the veins, the foetal circulation and the course of the lymphatics. But the circumstance which chiefly distinguished the history of anatomy at the beginning of the 17th century was the appearance Willis. of Thomas Willis[3] (1621–1675), who rendered himself eminent not only by good researches on the brain and nerves, but by many judicious observations on the structure of the lungs, the intestines, the blood-vessels and the glands. His anatomy of the brain and nerves is so minute and elaborate, and abounds so much in new information, that the reader is struck by the immense chasm between the vague and meagre notices of his predecessors and the ample and correct descriptions of Willis. This excellent work, however, is not the result of his own personal and unaided exertions; and the character of Willis derives additional lustre from the candid avowal of his obligations to Sir Christopher Wren and Thomas Millington, and, above all, to the diligent researches of his fellow-anatomist Richard Lower.

Willis was the first who numbered the cranial nerves in the order in which they are now usually enumerated by anatomists. His observation of the connexion of the eighth pair with the slender nerve which issues from the beginning of the spinal cord is known to all. He remarked the parallel lines of the mesolobe, afterwards minutely described by Felix Vicq d'Azyr (1748–1794). He seems to have recognized the communication of the convoluted surface of the brain and that between the lateral cavities beneath the fornix. He described the corpora striata and optic thalami; the four orbicular eminences, with the bridge, which he first named annular protuberance; and the white mammillary eminences, behind the infundibulum. In the cerebellum he remarks the arborescent arrangement of the white and grey matter, and gives a good account of the internal carotids, and the communications which they make with the branches of the basilar artery.

About the middle of the 17th century R. Hooke and Nehemiah Grew employed the simple microscope in the minute examination of plants and animals; and the Dutch philosopher A. Leeuwenhoek with great acuteness examined microscopically the solids and fluids of the body, recognized the presence of scales in the cuticle, and discovered the corpuscles in the blood and milk, and the spermatozoa in the seminal fluid. The researches of Malpighi also tended greatly to improve the knowledge of minute Malpighi. structure. He gave the first distinct ideas on the organization of the lung, and the mode in which the bronchial tubes and vessels terminate in that organ. By the microscope he traced the transition of the arteries into the veins, and saw the movements of the blood corpuscles in the capillaries. He endeavoured to unfold, by dissection and microscopic observation, the minute structure of the brain. He studied the structure of bone, he traced the formation and explained the structure of the teeth; and his name is to this day associated with the discovery of the deeper layer of the cuticle and the Malpighian bodies in the spleen and kidney. In these difficult inquiries the observations of Malpighi are in general faithful, and he may be regarded as the founder of histological anatomy.

Nicolas Steno, or Stensen, described with accuracy (1660) the lacrymal gland and passages, and rediscovered the parotid duct. L. Bellini studied the structure of the kidneys, and described the tongue and tonsils with some care; and Charles Drelincourt laboured to investigate the changes effected on the uterus by impregnation, and to elucidate the formation of the foetus. The science might have derived still greater advantages from the genius of Regnier de Graaf, who investigated with accuracy the structure of the pancreas and of the organs of generation in both sexes, had he not been cut off at the early age of thirty-two. Lastly, Wepfer, though more devoted to morbid anatomy, made, nevertheless, some just observations on the anatomical disposition of the cerebral vessels, the glandular structure of the liver, and the termination of the common duct in the duodenum.

The appearance of Frederic Ruysch, who was born in 1638, became professor of anatomy at Amsterdam in 1665 and died in that city in 1731, gave a new impulse to anatomical research, and tended not only to give the science greater precision, but to extend its limits in every direction. The talents of Ruysch are said to have been developed by accident.Ruysch. To repel the audacious and calumnious aspersions with which Louis de Bils attacked de le Boe and van Horne, Ruysch published his tract on the valves of the lymphatics, which completely established his character as an anatomist of originality and research. This, however, is the smallest of his services to the science. The art of injecting, which had been originally attempted by Eustachi and Varoli, and was afterwards rudely practised by Glisson, Bellini and Willis, was at length carried to greater perfection by de Graaf and Swammerdam, the former of whom injected the spermatic vessels with mercury and variously coloured liquors; while the latter, by employing melted wax with other ingredients, made the first approach to the refinements of modern anatomy. By improving this idea of using substances which, though solid, may be rendered fluid at the period of injecting, Ruysch carried this art to the highest perfection.

By the application of this happy contrivance he was enabled to demonstrate the arrangement of minute vessels in the interior of organs which had escaped the scrutiny of previous anatomists. Scarcely a part of the human body eluded the penetration of his syringe; and his discoveries were proportionally great. His account of the valves of the lymphatics, of the vessels of the lungs, and their minute structure; his researches on the vascular structure of the skin, of the bones, and their epiphyses, and their

  1. Glisson was for forty years professor of physic at Cambridge.
  2. Wharton was a graduate both of Oxford and Cambridge, and physician to St Thomas's Hospital.
  3. Willis was Sedleian professor of natural philosophy in Oxford in 1660. Later he practised in London.