Page:EB1911 - Volume 02.djvu/721

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
ARTHROPODA
679


invert of ectodermal origin in Hexapods. These tubes are shown to excrete nitrogenous waste products similar to uric acid. Tubes of renal excretory function in a like position occur in most terrestrial Arthropoda—viz. in Chilopoda, Diplopoda and Arachnida. They are also found in some of the semi-terrestrial and purely aquatic Amphipod Crustaceans. But the conclusion that all such tubes are identical in essential character seems to be without foundation. The Malpighian tubes of Hexapods are outgrowths of the proctodaeum, but those of Scorpion and the Amphipod Crustacea are part of the metenteron or endodermal gut, though originating near its junction with the proctodaeum. Hence the presence or absence of such tubes cannot be used as an argument as to affinity without some discrimination. The Scorpion’s so-called Malpighian tubes are not the same organs as those so named in the other Tracheata. Such renal caecal tubes seem to be readily evolved from either metenteron or proctodaeum when the conditions of the out-wash of nitrogenous waste-products are changed by the transference from aquatic to terrestrial life. The absence of such renal caeca in Limulus and their presence in the terrestrial Arachnida is precisely on a parallel with their absence in aquatic Crustacea and their presence in the feebly branchiate Amphipoda.

Group Characters.—We shall now pass the groups of the Arthropoda in review, attempting to characterize them in such a way as will indicate their probable affinities and genetic history.

Sub-Phylum ARTHROPODA.—The characters of the sub-phylum and those of the associated sub-phyla Chaetopoda and Rotifera have been given above, as well as the general characters of the phylum Appendiculata which comprises these great sub-phyla.

Grade A.—Hyparthropoda.

Hypothetical forms.

Grade B.—Protarthropoda.

(a) The integument is covered by a delicate soft cuticle (not firm or plated) which allows the body and its appendages great range of extension and contraction.

(b) The paired claws on the ends of the parapodia and the fang-like modifications of these on the first post-oral appendages (mandibles) are the only hard chitinous portions of the integument.

(c) The head is deuterognathous—that is to say, there is only one prosthomere, and accordingly the first and only pair of hemignaths is developed by adaptation of the appendages of the second somite.

(d) The appendages of the third somite (second post-oral) are clawless oral papillae.

(e) The rest of the somites carry equi-formal simple appendages, consisting of a corm or axis tipped with two chitinous claws and devoid of rami.

(f) The segmentation of the body is anomomeristic, there being no fixed number of somites characterizing all the forms included.

(g) The pair of eyes situated on the prosthomere are not of the Euarthropod type, but resemble those of Chaetopods (hence Nereid-ophthalmous).

(h) The muscles of the body-wall and gut do not consist of transversely-striped muscular fibre, but of the unstriped tissue observed also in Chaetopoda.

(i) A pair of coelomoducts is developed in every somite including the prosthomere, in which alone it atrophies in later development.

(j) The ventral nerve-cords are widely separated—in fact, lateral in position.

(k) There are no masses of nerve-cells forming a ganglion (neuromere) in each somite. (In this respect the Protarthropoda are at a lower stage than most of the existing Chaetopoda.)

(l) The genital ducts are formed by the enlargement of the coelomoducts of the penultimate somite.

Class (Unica).—Onychophora.

With the characters of the grade; add the presence within the body of fine unbranched tracheal tubes, devoid of spiral thickening, opening to the exterior by numerous irregularly scattered tracheal pits.

Genera—Eoperipatus, Peripatopsis, Opisthopatus, &c. (See Peripatus.)

Grade C (of the Arthropoda).—Euarthropoda.

(a) Integument heavily plated with firm chitinous cuticle, allowing no expansion and retraction of regions of the body nor change of dimensions, except, in some cases, a dorso-ventral bellows movement. The separation of the heavier plates of chitin by grooves of delicate cuticle results in the hinging or jointing of the body and its appendages, and the consequent flexing and extending of the jointed pieces.

(b) Claws and fangs are developed on the branches or rami of the parapodia, not on the end of the axis or corm.

(c) The head is either deuterognathous, tritognathous, or tetartognathous.

(d) Rarely only one, and usually at least two, of the somites following the mandibular somite carry appendages modified as jaws (with exceptions of a secondary origin).

(e) The rest of the somites may all carry appendages, or only a limited number may carry appendages. In all cases the appendages primarily develop rami or branches which form the limbs, the primitive axis or corm being reduced and of insignificant size. In the most primitive stock all the post-oral appendages had gnathobasic outgrowths.

(f) The segmentation of the body is anomomeristic in the more archaic members of each class, nomomeristic in the higher members.

(g) The two eyes of Chaetopod structure have disappeared, and are replaced by the Euarthropod eyes.

(h) The muscles in all parts of the body consist of striped muscular fibre, never of unstriped muscular tissue.

(i) The coelomoducts are suppressed in most somites, and retained only as the single pair of genital ducts (very rarely more numerous) and in some also as the excretory glands (one or two pairs).

(j) The ventral nerve-cords approach one another in the mid-ventral line behind the mouth.

(k) The nerve-cells of the ventral nerve cords are segregated as paired ganglia in each somite, often united by meristic dislocation into composite ganglia.

(l) The genital ducts may be the coelomoducts of the penultimate or ante-penultimate or adjacent somite, or of a somite placed near the middle of the series, or of a somite far forward in the series.

Class 1 (of the Euarthropoda).—Diplopoda.

The head has but one prosthomere (monoprosthomerous), and is accordingly deuterognathous. This carries short-jointed antennae (in one case bi-ramose) and eyes, the structure and development of which require further elucidation. Only one somite following the first post-oral or mandibular segment has its appendages modified as jaws.

The somites of the body, except in Pauropus, either fuse after early development and form double somites with two pairs of appendages (Julus, &c.), or present legless and leg-bearing somites alternating.

Somites, anomomeristic, from 12 to 150 in the post-cephalic series.

The genital ducts open in the fourth, or between the fourth and fifth post-oral somite.

Terrestrial forms with small-jointed legs formed by adaptation of a single ramus of the appendage. Tracheae are present.

Note.—The Diplopoda include the Juliformia, the Symphyla (Scolopendrella), and Pauropoda (Pauropus). They were until recently classified with the Chilopoda (Centipedes), with which they have no close affinity, but only a superficial resemblance. (Compare the definition of the class Chilopoda.)

The movement of the legs in Diplopoda is like that of those of Peripatus, of the Phyllopod Crustacea, and of the parapodia of Chaetopoda, symmetrical and identical on the two sides of the body. The legs of Chilopoda move in alternating groups on the two sides of the body. This implies a very much higher development of nerves and muscles in the latter. (See Millipede.)

Class 2 (of the Euarthropoda).—Arachnida.

Head tritognathous and diprosthomerous—that is to say, with two prosthomeres, the first bearing typical eyes, the second a pair of appendages reduced to a single ramus, which is in more primitive forms antenniform, in higher forms chelate or retrovert. The ancestral stock was pantognathobasic—i.e. had a gnathobase or jaw process on every parapodium. As many as six pairs of appendages following the mouth may have an enlarged gnathobase actually functional as a jaw or hemignath, but a ramus is well developed on each of these appendages either as a simple walking leg, a palp or a chela. In the more primitive forms the appendage of every post-oral somite has a gnathobase and two rami; in higher specialized forms the gnathobases may be atrophied in every appendage, even in the first post-oral.

The more primitive forms are anomomeristic; the higher forms nomomeristic, showing typically three groups or tagmata of six somites each.

The genital apertures are placed on the first somite of the second tagma or mesosoma. Their position is unknown in the more primitive forms. The more primitive forms have branchial respiratory processes developed on a ramus of each of the post-oral appendages. In higher specialized forms these branchial processes become first of all limited to five segments of the mesosoma, then sunk beneath the surface as pulmonary organs, and finally atrophied, their place being taken by a well-developed tracheal system.

A character of great diagnostic value in the more primitive Arachnida is the tendency of the chitinous investment of the tergal surface of the telson to unite during growth with that of the free somites in front of it, so as to form a pygidial shield or posterior carapace, often comprising as many as fifteen somites (Trilobites, Limulus).

A pair of central monomeniscous diplostichous eyes is often present on the head. Lateral eyes also are often present which are monostichous with aggregated lenses (Limulus) or with isolated lenses (Scorpio), or are diplostichous with simple lens (Pedipalpi, Araneae, &c.).

Class 3 (of the Euarthropoda).—Crustacea.

Head tetartognathous and triprosthomerous—that is to say, with three prosthomeres; the first bearing typical eyes, the second a pair of antenniform appendages (often bi-ramose), the third a pair of appendages usually antenniform, sometimes claw-like. The ancestral stock was (as in the Arachnida) pantognathobasic, that