Page:EB1911 - Volume 08.djvu/778

From Wikisource
Jump to navigation Jump to search
This page has been validated.
  
DYEING
751


bichromate of potash (2%) is added, and boiling is continued for half an hour longer.

The erio chrome colours (black, brown, red, &c.) are applied in wool dyeing like diamond black.

Chromotrope, of which there are several brands, is an Acid Colour which is applied to wool in an acid bath in the usual manner. The red or purple colours thus obtained are saddened in the same bath with bichromate of potash and changed into black, the colouring matter being oxidized and simultaneously combined with chromium.

Miscellaneous Colours.—Under this head there may be arranged a few dyestuffs which, although capable of inclusion under one or other of the foregoing groups, it is more convenient to treat of separately. Indigo, Aniline Black and Catechu, for example, might be placed in the class of Developed Colours, since they are all developed on the fibre, and indeed by the same method, namely, by oxidation.

Indigo is one of our most important blue dyestuffs, which has been employed from the earliest times. Indigo, being insoluble in water, would be of no use in dyeing if it were not capable of being rendered soluble. This is effected in two ways, corresponding to which there are two methods of dyeing with indigo. One method consists in dissolving the indigo in very strong sulphuric acid, whereby it is converted into indigotin-disulphonic acid (Indigo Extract), which is readily soluble in water. This substance belongs to the group of Acid Colours; hence it is applied to the animal fibres, wool and silk, by boiling in a solution of the colouring matter slightly acidified with sulphuric acid. The second and most important method is based on the fact that under the influence of reducing agents (i.e. substances capable of yielding nascent hydrogen) indigo blue is changed into indigo white, which is soluble in alkali, the solution thus obtained being called a “vat.” If textile materials are steeped in a clear yellow solution of the reduced indigo and then exposed to air, the indigo white absorbed by the fibre is oxidized and reconverted into indigo blue within and upon the fibre, which thus becomes dyed blue; this is the so-called “indigo-vat” method of dyeing. Comparing the two methods, the “indigo-extract” method is only applicable to the animal fibres, and although it gives brighter colours, they are fugitive to light and are decolourized by washing with alkaline solutions; the “vat method” is applicable to all fibres, and gives somewhat dull blues, which are very fast to light, washing, &c.

Cotton is dyed by means of the “lime and copperas vat,” the “zinc powder vat,” or the “hydrosulphite vat.” In the first-mentioned vat the ingredients are quicklime, ferrous sulphate and finely ground indigo; the lime decomposes the ferrous sulphate and precipitates ferrous hydrate; this quickly reduces the indigo to indigo white, which dissolves in the excess of lime present. The ingredients of the zinc powder vat are zinc powder, lime and indigo; in the presence of the lime and indigo the zinc takes up oxygen from the water, liberating the hydrogen necessary to reduce the indigo, as in the previous vat. The constituents of the hydrosulphite vat are hydrosulphite of soda, lime and indigo. The requisite hydrosulphite of soda is prepared by allowing zinc powder (13 ℔) to act upon a cold concentrated solution of bisulphite of soda (17 gallons of sp. gr. 1·225), taking care to avoid, as much as possible, access of air and any heating of the mixture, to prevent decomposition. The solution thus obtained is thoroughly neutralized by the addition of lime; and after settling, the clear liquor is used for the vat, along with indigo and lime. Here again the hydrosulphite takes up oxygen from the water and liberates the necessary hydrogen. It is found convenient to prepare, in the first instance, a very concentrated standard of reduced indigo, and to add as much of this to the dye-vat as may be required, along with lime and a little hyposulphite of soda. The advantages of this vat are that it is easily prepared and that there is very little sediment; moreover, it can be employed in dyeing wool, as well as cotton, and it is now very generally in use. The vat usually employed for dyeing wool is the so-called “woad vat,” which differs from the foregoing in that the hydrogen necessary to reduce the indigo and bring it into solution is furnished, not by the action of chemical agents, but by means of fermentation. The ingredients of the woad vat are indigo, woad, bran, madder and lime. The woad here employed is prepared by grinding the leaves of the woad plant (Isatis tinctoria) to a paste, which is allowed to ferment and then partially dried. It serves as the ferment to excite lactic and butyric fermentation with the aid of the bran and madder, the necessary hydrogen being thus evolved. Excessive fermentation is avoided by making timely additions of lime; sluggish fermentation is accelerated by additions of bran and slightly raising the temperature. When the reduction and complete solution of the indigo is effected, the vat is allowed to settle, and the woollen material is immersed and moved about in the clear liquor for half an hour to two hours, according to the shade required, then squeezed and exposed to the air in order to develop the blue colour on the fibre.

Thioindigo red is an artificial colouring matter belonging to the indigo series and comes into the market in the form of a paste. It is used in dyeing in exactly the same way as indigo, yielding shades which range from a somewhat dull pink to a full claret shade of red. The colours obtained are remarkable for their fastness.

Indanthrene. This colouring matter, which is also sold as a paste, is an anthracene derivative, being formed by the action of caustic potash on β-amidoanthraquinone. It is reduced by hydrosulphite of soda yielding a blue vat, in which cotton and other vegetable fibres are dyed in the same way as in the indigo vat. Since a fair amount of caustic soda is necessary for the setting of the vat, the dyestuff is not suitable for animal fibres. Indanthrene yields on cotton reddish shades of blue which are extremely fast to all external influences; in fact the colour is so fast that when once fixed on cotton it cannot be removed again from the fibre by any known means.

Other vat colours belonging to this series, which are similarly applied, are flavanthrene (yellow), viridanthrene (green), fuscanthrene (grey-brown), violanthrene (dull violet) and melanthrene (grey to black). The algol colours resemble the indanthrene colours in their properties and application.

Aniline Black differs from other dyes in that it is not sold as a ready-made dyestuff, but is produced in situ upon the fibre by the oxidation of aniline. It is chiefly used for cotton, also for silk and cotton-silk union fabrics, but seldom or not at all for wool. Properly applied, this colour is one of the most permanent to light and other influences with which we are acquainted. One method of dyeing cotton is to work the material for about two hours in a cold solution containing aniline (10 parts), hydrochloric acid (20 parts), bichromate of potash (20 parts), sulphuric acid (20 parts), and ferrous sulphate (10 parts). The ferrous sulphate here employed is oxidized by the chromic acid to a ferric salt, which serves as a carrier of oxygen to the aniline. This method of dyeing is easily carried out, and it gives a good black; but since much of the colouring matter is precipitated on the fibre superficially as well as in the bath itself, the colour has the defect of rubbing off. Another method is to impregnate the cotton with a solution containing aniline hydrochloride (35 parts), neutralized with addition of a little aniline oil, sodium chlorate (10 parts), ammonium chloride (10 parts). Another mixture is 1·8 part aniline salt, 12 parts potassium ferrocyanide, 200 parts water, 3·5 parts potassium chlorate dissolved in water. After squeezing, the material is passed through a special oxidation chamber, the air of which is heated to about 50° C. and also supplied with moisture. This oxidizing or ageing is continuous, the material passing into the chamber at one end in a colourless condition, and after about 20 minutes passing out again with the black fully developed, a final treatment with hot chromic acid solution and soaping being necessary to complete the process. In this method, employing the first-mentioned solution, chlorate of copper is formed, and this being a very unstable compound, readily decomposes, and the aniline is oxidized by the liberated chlor-oxygen compounds. The presence in the mixture of a metallic salt is very important in aiding the development of the black, and for this purpose salts of vanadium, cerium and copper have proved to be specially useful. The chemistry of aniline black is still incomplete, but it would appear that there are several oxidation products of aniline. The first product is so-called emeraldine, a dark green substance of the nature of a salt, which by treatment with alkali yields a dark blue base called azurine. The further oxidation of emeraldine yields nigraniline, also a dark green salt, but the free base of which has a violet black colour. The latter becomes greenish under the influence of acids, especially sulphuric acid, and this explains the defect known as “greening” which is developed in ordinary aniline blacks during exposure to air. By a supplementary oxidation with chromic acid such a black is rendered ungreenable, the nigraniline being probably changed into the more stable chromate of nigraniline.

Catechu is a valuable brown dyestuff, obtained from various species of Acacia, Areca and Uncaria growing in India. The wood, leaves and fruit of these plants are extracted with boiling water; the decoction is then evaporated to dryness or to a pasty consistency. Catechu is largely used by the cotton dyer for the production of brown, drab and similar colours. It is seldom employed for wool. Cotton is usually dyed by boiling it for about one hour in a decoction of catechu (100%) containing copper sulphate (5%). After squeezing, the material is boiled for about fifteen minutes in a solution of bichromate of potash (1/4 oz. per gal.), then washed and dried. By repeating the operations two or three times deeper shades are obtained. During the boiling with catechu the cotton attracts the active principles catechin and catechu-tannic acid, but it thus acquires only a pale brown colour; in the bichromate of potash, however, these are oxidized to form insoluble japonic acid, which permeates the fibre, and a deep brown colour is thus developed. Catechu browns are fast to a variety of influences, e.g. washing, alkalis, acids, &c., but less so to light. Catechu has been recently much employed, in conjunction with copper sulphate, for dyeing the so-called khaki-brown on woollen material for military clothing. On silk, catechu is much used for weighting purposes in dyeing black.

Mineral Colours.—Those include Chrome Yellow, Iron Buff, Prussian Blue and Manganese Brown.

Chrome Yellow is only useful in cotton-dyeing as a self-colour, or for conversion into chrome orange, or, in conjunction with indigo, for the production of fast green colours. The cotton is first impregnated with a solution of lead acetate or nitrate, squeezed, and then passed through a solution of sodium sulphate or lime water to fix the lead on the fibre as sulphate or oxide of lead. The