material is then passed through a solution of bichromate of potash. The colour is changed to a rich orange by a short, rapid passage through boiling milk of lime, and at once washing with water, a basic chromate of lead being thus produced. The colour is fast to light, but has the defect of being blackened by sulphuretted hydrogen.
Iron Buff is produced by impregnating the cotton with a solution of ferrous sulphate, squeezing, passing into sodium hydrate or carbonate solution, and finally exposing to air, or passing through a dilute solution of bleaching powder. The colour obtained, which is virtually oxide of iron, or iron-rust, is fast to light and washing, but is readily removed by acids.
Prussian Blue is applicable to wool, cotton and silk, but since the introduction of coal-tar blues its employment has been very much restricted. The colour is obtained on cotton by first dyeing an iron buff, according to the method just described, and then passing the dyed cotton into an acidified solution of potassium ferrocyanide, when the blue is at once developed. A similar method is employed for silk. Wool is dyed by heating it in a solution containing potassium ferricyanide and sulphuric acid. The colour is developed gradually as the temperature rises; it may be rendered brighter by the addition of stannous chloride. On wool and silk Prussian blue is very fast to light, but alkalis turn it brown (ferric oxide).
Manganese brown or bronze is applied in wool, silk and cotton dyeing. The animal fibres are readily dyed by boiling with a solution of potassium permanganate, which, being at first absorbed by the fibre, is readily reduced to insoluble brown manganic hydrate. Since caustic potash is generated from the permanganate and is liable to act detrimentally on the fibre, it is advisable to add some magnesium sulphate to the permanganate bath in order to counteract this effect. Imitation furs are dyed in this manner on wool-plush, the tips or other parts of the fibres being bleached by the application of sulphurous acid. Cotton is dyed by first impregnating it with a solution of manganous chloride, then dyeing and passing into a hot solution of caustic soda. There is thus precipitated on the fibre manganous hydrate, which by a short passage into a cold dilute solution of bleaching powder is oxidized and converted into the brown manganic hydrate. This manganese bronze or brown colour is very susceptible to, and readily bleached by, reducing agents; hence when exposed to the action of an atmosphere in which gas is freely burnt, the colour is liable to be discharged, especially where the fabric is most exposed. In other respects manganese bronze is a very fast colour.
Dyeing on a large Scale.—It is not possible to give here more than a bare outline of the methods which are used on the large scale for dyeing textile fibres, yarns and fabrics. In principle, dyeing is effected by allowing an aqueous[1] solution of the dye-stuff, with or without additions (alkalis, acids, salts, &c.), to act, usually at an elevated temperature, on the material to be dyed. During the process it is necessary, in order to ensure the uniform distribution of the dyestuff in the material, that the latter should either be moved more or less continuously in the dye liquor or that the dye liquor should be circulated through the material. The former mode of operation is in general use for hank, warp and piece dyeing, but for textile fibres in the loose condition or in the form of “slubbing,” “sliver” or “cops” (see Spinning) the latter method has, in consequence of the introduction of improved machinery, come more and more into vogue within recent years.
Loose Material.—Cotton and wool are frequently dyed in the loose state, i.e. before being subjected to any mechanical treatment. The simplest method of effecting this is to treat the material in open vessels (boilers) which can be heated either by means of steam or direct fire. Since, however, a certain amount of felting or matting of the fibres cannot be avoided, it is frequently found to be more advantageous to effect these treatments in specially constructed apparatus in which the dye liquors are circulated through the material.
Fig. 1.—Dye-vat for Yarn. |
Fig. 2. |
Yarn.—Yarn may be dyed either in the hank, in the warp or in the cop, i.e. in the form in which the yarn leaves the spinning frame. The dyeing in the hank is carried out in rectangular dye-vats constructed of wood or stone like that shown in fig. 1, in which the hanks are suspended from smooth wooden poles or rods resting on the sides, and are thus immersed almost entirely in the dye liquor. The heating of the vat is effected either by means of live steam, i.e. by blowing steam into the dye solution from a perforated pipe which runs along the bottom of the vat, or by means of a steam coil similarly situated. In order to expose the hanks as uniformly as possible to the action of the dye liquor, they are turned by hand at regular intervals until the operation is finished. Washing off is effected in the same or in a similar vessel, after which excess of water is removed by wringing by hand, through squeezing rollers or, what is generally preferred, in a hydro-extractor (centrifugal machine). The drying of the dyed and washed yarn is generally effected by suspending it on poles in steam-heated drying chambers. Yarn in the warp is dyed in vats or “boxes” like that shown in fig. 2, through which it is caused to pass continuously. The warps to be dyed pass slowly up and down over the loose rollers in the first box B, then through squeezing rollers S into the next, and the same thing occurs in the second (also third and fourth in a four-box machine) box A, whence they are delivered through a second pair of squeezing rollers S1 into the wagon W. The boxes may contain the same or different liquors, according to the nature of the dyestuff employed. Washing is done in the same machine, while drying is effected on a cylinder drying machine like that shown in figs. 8 and 9 of Bleaching. Latterly, machines have been introduced for dyeing warps on the beam, the dye liquor being caused to circulate through the material, and the system appears to be meeting with considerable success. Large quantities of yarn, especially cotton, are now dyed in the cop. When the dyed yarn is to be used as weft the main advantage of this method is at once apparent, inasmuch as the labour, time and waste of material incurred by reeling into hanks and then winding back into the compact form so as to fit into the shuttle are avoided. On the other hand the number of fast dyestuffs suitable for cop dyeing is very limited. In the original cop-dyeing machine constructed by Graemiger a thin tapering perforated metallic tube is inserted in the hollow of each cop. The cops are then attached to a perforated disk (which constitutes the lid of a chamber or box) by inserting the protruding ends of the tubes into the perforations. The chamber is now immersed in the dye-bath and the hot liquor is drawn through the cops by means of a centrifugal pump and returned continuously to the dye-bath. This principle, which is known as the skewer or spindle system, is the one on which most modern cop-dyeing machines are based. In the so-called “compact” system of cop dyeing the cops are packed as closely as possible in a box, the top and bottom (or the two opposite sides) of which are
- ↑ The term “dry dyeing,” which is carried out only to a very limited extent, relates to the dyeing of fabrics with the dyestuff dissolved in liquids other than water, e.g. benzene, alcohol, &c.