equivalent conductivity reaches a limiting value indicating that complete ionization is reached as dilution is increased. With such salts alone is a valid comparison possible.
Electrolytes with two Ions. | |||
Potassium chloride | 3.60 | Nitric acid | 3.73 |
Sodium chloride | 3.67 | Potassium nitrate | 3.46 |
Potassium hydrate | 3.71 | Sodium nitrate | 3.55 |
Hydrochloric acid | 3.61 | Ammonium nitrate | 3.58 |
Electrolytes with three Ions. | |||
Sulphuric acid | 4.49 | Calcium chloride | 5.04 |
Sodium sulphate | 5.09 | Magnesium chloride | 5.08 |
At the concentration used by Loomis the electrical conductivity indicates that the ionization is not complete, particularly in the case of the salts with divalent ions in the second list. Allowing for incomplete ionization the general concordance of these numbers with the theoretical ones is very striking.
The measurements of freezing points of solutions at the extreme dilution necessary to secure complete ionization is a matter of great difficulty, and has been overcome only in a research initiated by E. H. Griffiths.[1] Results have been obtained for solutions of sugar, where the experimental number is 1.858, and for potassium chloride, which gives a depression of 3.720. These numbers agree with those indicated by theory, viz. 1.857 and 3.714, with astonishing exactitude. We may take Arrhenius’ first relation as established for the case of potassium chloride.
The second relation, as we have seen, is not a strict consequence of theory, and experiments to examine it must be treated as an investigation of the limits within which solutions are dilute within the thermodynamic sense of the word, rather than as a test of the soundness of the theory. It is found that divergence has begun before the concentration has become great enough to enable freezing points to be measured with any ordinary apparatus. The freezing point curve usually lies below the electrical one, but approaches it as dilution is increased.[2]
Returning once more to the consideration of the first relation, which deals with the comparison between the number of ions and the number of pressure-producing particles in dilute solution, one caution is necessary. In simple substances like potassium chloride it seems evident that one kind of dissociation only is possible. The electrical phenomena show that there are two ions to the molecule, and that these ions are electrically charged. Corresponding with this result we find that the freezing point of dilute solutions indicates that two pressure-producing particles per molecule are present. But the converse relation does not necessarily follow. It would be possible for a body in solution to be dissociated into non-electrical parts, which would give osmotic pressure effects twice or three times the normal value, but, being uncharged, would not act as ions and impart electrical conductivity to the solution. L. Kahlenberg (Jour. Phys. Chem., 1901, v. 344, 1902, vi. 43) has found that solutions of diphenylamine in methyl cyanide possess an excess of pressure-producing particles and yet are non-conductors of electricity. It is possible that in complicated organic substances we might have two kinds of dissociation, electrical and non-electrical, occurring simultaneously, while the possibility of the association of molecules accompanied by the electrical dissociation of some of them into new parts should not be overlooked. It should be pointed out that no measurements on osmotic pressures or freezing points can do more than tell us that an excess of particles is present; such experiments can throw no light on the question whether or not those particles are electrically charged. That question can only be answered by examining whether or not the particles move in an electric field.
The dissociation theory was originally suggested by the osmotic pressure relations. But not only has it explained satisfactorily the electrical properties of solutions, but it seems to be the only known hypothesis which is consistent with the experimental relation between the concentration of a solution and its electrical conductivity (see Conduction, Electric, § II., “Nature of Electrolytes”). It is probable that the electrical effects constitute the strongest arguments in favour of the theory. It is necessary to point out that the dissociated ions of such a body as potassium chloride are not in the same condition as potassium and chlorine in the free state. The ions are associated with very large electric charges, and, whatever their exact relations with those charges may be, it is certain that the energy of a system in such a state must be different from its energy when unelectrified. It is not unlikely, therefore, that even a compound as stable in the solid form as potassium chloride should be thus dissociated when dissolved. Again, water, the best electrolytic solvent known, is also the body of the highest specific inductive capacity (dielectric constant), and this property, to whatever cause it may be due, will reduce the forces between electric charges in the neighbourhood, and may therefore enable two ions to separate.
This view of the nature of electrolytic solutions at once explains many well-known phenomena. Other physical properties of these solutions, such as density, colour, optical rotatory power, &c., like the conductivities, are additive, i.e. can be calculated by adding together the corresponding properties of the parts. This again suggests that these parts are independent of each other. For instance, the colour of a salt solution is the colour obtained by the superposition of the colours of the ions and the colour of any undissociated salt that may be present. All copper salts in dilute solution are blue, which is therefore the colour of the copper ion. Solid copper chloride is brown or yellow, so that its concentrated solution, which contains both ions and undissociated molecules, is green, but changes to blue as water is added and the ionization becomes complete. A series of equivalent solutions all containing the same coloured ion have absorption spectra which, when photographed, show identical absorption bands of equal intensity.[3] The colour changes shown by many substances which are used as indicators (q.v.) of acids or alkalis can be explained in a similar way. Thus para-nitrophenol has colourless molecules, but an intensely yellow negative ion. In neutral, and still more in acid solutions, the dissociation of the indicator is practically nothing, and the liquid is colourless. If an alkali is added, however, a highly dissociated salt of para-nitrophenol is formed, and the yellow colour is at once evident. In other cases, such as that of litmus, both the ion and the undissociated molecule are coloured, but in different ways.
Electrolytes possess the power of coagulating solutions of colloids such as albumen and arsenious sulphide. The mean values of the relative coagulative powers of sulphates of mono-, di-, and tri-valent metals have been shown experimentally to be approximately in the ratios 1 : 35 : 1023. The dissociation theory refers this to the action of electric charges carried by the free ions. If a certain minimum charge must be collected in order to start coagulation, it will need the conjunction of 6n monovalent, or 3n divalent, to equal the effect of 2n tri-valent ions. The ratios of the coagulative powers can thus be calculated to be 1:x:x2, and putting x = 32 we get 1 : 32 : 1024, a satisfactory agreement with the numbers observed.[4]
The question of the application of the dissociation theory to the case of fused salts remains. While it seems clear that the conduction in this case is carried on by ions similar to those of solutions, since Faraday’s laws apply equally to both, it does not follow necessarily that semi-permanent dissociation is the only way to explain the phenomena. The evidence in favour of dissociation in the case of solutions does not apply to fused salts, and it is possible that, in their case, a series of molecular interchanges, somewhat like Grotthus’s chain, may represent the mechanism of conduction.
An interesting relation appears when the electrolytic conductivity of solutions is compared with their chemical activity. The readiness and speed with which electrolytes react are in
- ↑ Brit. Ass. Rep., 1906, Section A, Presidential Address.
- ↑ See Theory of Solution, by W. C. D. Whetham (1902), p. 328.
- ↑ W. Ostwald, Zeits. physikal. Chemie, 1892, vol. ix. p. 579; T. Ewan, Phil. Mag. (5), 1892, vol. xxxiii. p. 317; G. D. Liveing, Cambridge Phil. Trans., 1900, vol. xviii. p. 298.
- ↑ See W. B. Hardy, Journal of Physiology, 1899, vol. xxiv. p. 288; and W. C. D. Whetham, Phil. Mag., November 1899.