sharp contrast with the difficulty experienced in the case of non-electrolytes. Moreover, a study of the chemical relations of electrolytes indicates that it is always the electrolytic ions that are concerned in their reactions. The tests for a salt, potassium nitrate, for example, are the tests not for KNO3, but for its ions K and NO3, and in cases of double decomposition it is always these ions that are exchanged for those of other substances. If an element be present in a compound otherwise than as an ion, it is not interchangeable, and cannot be recognized by the usual tests. Thus neither a chlorate, which contains the ion ClO3, nor monochloracetic acid, shows the reactions of chlorine, though it is, of course, present in both substances; again, the sulphates do not answer to the usual tests which indicate the presence of sulphur as sulphide. The chemical activity of a substance is a quantity which may be measured by different methods. For some substances it has been shown to be independent of the particular reaction used. It is then possible to assign to each body a specific coefficient of affinity. Arrhenius has pointed out that the coefficient of affinity of an acid is proportional to its electrolytic ionization.
The affinities of acids have been compared in several ways. W. Ostwald (Lehrbuch der allg. Chemie, vol. ii., Leipzig, 1893) investigated the relative affinities of acids for potash, soda and ammonia, and proved them to be independent of the base used. The method employed was to measure the changes in volume caused by the action. His results are given in column I. of the following table, the affinity of hydrochloric acid being taken as one hundred. Another method is to allow an acid to act on an insoluble salt, and to measure the quantity which goes into solution. Determinations have been made with calcium oxalate, CaC2O4 + H2O, which is easily decomposed by acids, oxalic acid and a soluble calcium salt being formed. The affinities of acids relative to that of oxalic acid are thus found, so that the acids can be compared among themselves (column II.). If an aqueous solution of methyl acetate be allowed to stand, a slow decomposition goes on. This is much quickened by the presence of a little dilute acid, though the acid itself remains unchanged. It is found that the influence of different acids on this action is proportional to their specific coefficients of affinity. The results of this method are given in column III. Finally, in column IV. the electrical conductivities of normal solutions of the acids have been tabulated. A better basis of comparison would be the ratio of the actual to the limiting conductivity, but since the conductivity of acids is chiefly due to the mobility of the hydrogen ions, its limiting value is nearly the same for all, and the general result of the comparison would be unchanged.
Acid. | I. | II. | III. | IV. |
Hydrochloric | 100 | 100 | 100 | 100 |
Nitric | 102 | 110 | 92 | 99.5 |
Sulphuric | 68 | 67 | 74 | 65.1 |
Formic | 4.0 | 2.5 | 1.3 | 1.7 |
Acetic | 1.2 | 1.0 | 0.3 | 0.4 |
Propionic | 1.1 | .. | 0.3 | 0.3 |
Monochloracetic | 7.2 | 5.1 | 4.3 | 4.9 |
Dichloraeetic | 34 | 18 | 23.0 | 25.3 |
Trichloracetic | 82 | 63 | 68.2 | 62.3 |
Malic | 3.0 | 5.0 | 1.2 | 1.3 |
Tartaric | 5.3 | 6.3 | 2.3 | 2.3 |
Succinic | 0.1 | 0.2 | 0.5 | 0.6 |
It must be remembered that, the solutions not being of quite the same strength, these numbers are not strictly comparable, and that the experimental difficulties involved in the chemical measurements are considerable. Nevertheless, the remarkable general agreement of the numbers in the four columns is quite enough to show the intimate connexion between chemical activity and electrical conductivity. We may take it, then, that only that portion of these bodies is chemically active which is electrolytically active—that ionization is necessary for such chemical activity as we are dealing with here, just as it is necessary for electrolytic conductivity.
The ordinary laws of chemical equilibrium have been applied to the case of the dissociation of a substance into its ions. Let be the number of molecules which dissociate per second when the number of undissociated molecules in unit volume is unity, then in a dilute solution where the molecules do not interfere with each other, is the number when the concentration is Recombination can only occur when two ions meet, and since the frequency with which this will happen is, in dilute solution, proportional to the square of the ionic concentration, we shall get for the number of molecules re-formed in one second where is the number of dissociated molecules in one cubic centimetre. When there is equilibrium, If be the molecular conductivity, and its value at infinite dilution, the fractional number of molecules dissociated is which we may write as . The number of undissociated molecules is then so that if be the volume of the solution containing 1 gramme-molecule of the dissolved substance, we get
and |
In the case of substances like ammonia and acetic acid, where the dissociation is very small, is nearly equal to unity, and only varies slowly with dilution. The equation then becomes or so that the molecular conductivity is proportional to the square root of the dilution. Ostwald has confirmed the equation by observation on an enormous number of weak acids (Zeits. physikal. Chemie, 1888, ii. p. 278; 1889, iii. pp. 170, 241, 369). Thus in the case of cyanacetic acid, while the volume changed by doubling from 16 to 1024 litres, the values of were 0.00 (376, 373, 374, 361, 362, 361, 368). The mean values of for other common acids were—formic, 0.0000214; acetic, 0.0000180; monochloracetic, 0.00155; dichloracetic, 0.051; trichloracetic, 1.21; propionic, 0.0000134. From these numbers we can, by help of the equation, calculate the conductivity of the acids for any dilution. The value of however, does not keep constant so satisfactorily in the case of highly dissociated substances, and empirical formulae have been constructed to represent the effect of dilution on them. Thus the values of the expressions (Rudolphi, Zeits. physikal. Chemie, 1895, vol. xvii. p. 385) and (van ’t Hoff, ibid., 1895, vol. xviii. p. 300) are found to keep constant as changes. Van ’t Hoff’s formula is equivalent to taking the frequency of dissociation as proportional to the square of the concentration of the molecules, and the frequency of recombination as proportional to the cube of the concentration of the ions. An explanation of the failure of the usual dilution law in these cases may be given if we remember that, while the electric forces between bodies like undissociated molecules, each associated with equal and opposite charges, will vary inversely as the fourth power of the distance, the forces between dissociated ions, each carrying one charge only, will be inversely proportional to the square of the distance. The forces between the ions of a strongly dissociated solution will thus be considerable at a dilution which makes forces between undissociated molecules quite insensible, and at the concentrations necessary to test Ostwald’s formula an electrolyte will be far from dilute in the thermodynamic sense of the term, which implies no appreciable intermolecular or interionic forces.
When the solutions of two substances are mixed, similar considerations to those given above enable us to calculate the resultant changes in dissociation. (See Arrhenius, loc. cit.) The simplest and most important case is that of two electrolytes having one ion in common, such as two acids. It is evident that the undissociated part of each acid must eventually be in equilibrium with the free hydrogen ions, and, if the concentrations are not such as to secure this condition, readjustment must occur. In order that there should be no change in the states of dissociation on mixing, it is necessary, therefore, that the concentration of the hydrogen ions should be the same in each separate solution. Such solutions were called by Arrhenius “isohydric.” The two solutions, then, will so act on each other when mixed that they become isohydric. Let us suppose that we have one very active acid like hydrochloric, in which dissociation is nearly complete, another like acetic, in which it is very small. In order that the solutions of these should be isohydric and the concentrations of the hydrogen ions the same, we must have a very large quantity of the feebly dissociated acetic acid, and a very small quantity of the strongly dissociated hydrochloric, and in such proportions alone will equilibrium be possible. This explains the action of a strong acid on the salt of a weak acid. Let us allow dilute sodium acetate to react with dilute hydrochloric acid. Some acetic acid is formed, and this process will go on till the solutions of the two acids are isohydric: that is, till the dissociated hydrogen ions are in equilibrium with both. In order that this should hold, we have seen that a considerable quantity of acetic acid must be present, so that a corresponding amount of the salt will be decomposed, the quantity being greater the less the acid is dissociated. This “replacement” of a “weak” acid by a “strong” one is a matter of common observation in the chemical laboratory. Similar investigations applied to the general case of chemical equilibrium lead to an expression of exactly the same form as that given by C. M. Guldberg and P. Waage, which is universally accepted as an accurate representation of the facts.
The temperature coefficient of conductivity has approximately the same value for most aqueous salt solutions. It decreases both as the temperature is raised and as the concentration is increased, ranging from about 3.5% per degree for extremely dilute solutions (i.e. practically pure water) at 0° to about 1.5