Page:EB1911 - Volume 09.djvu/240

From Wikisource
Jump to navigation Jump to search
This page has been validated.
ELECTROLYSIS
223

for concentrated solutions at 18°. For acids its value is usually rather less than for salts at equivalent concentrations. The influence of temperature on the conductivity of solutions depends on (1) the ionization, and (2) the frictional resistance of the liquid to the passage of the ions, the reciprocal of which is called the ionic fluidity. At extreme dilution, when the ionization is complete, a variation in temperature cannot change its amount. The rise of conductivity with temperature, therefore, shows that the fluidity becomes greater when the solution is heated. As the concentration is increased and un-ionized molecules are formed, a change in temperature begins to affect the ionization as well as the fluidity. But the temperature coefficient of conductivity is now generally less than before; thus the effect of temperature on ionization must be of opposite sign to its effect on fluidity. The ionization of a solution, then, is usually diminished by raising the temperature, the rise in conductivity being due to the greater increase in fluidity. Nevertheless, in certain cases, the temperature coefficient of conductivity becomes negative at high temperatures, a solution of phosphoric acid, for example, reaching a maximum conductivity at 75° C.

The dissociation theory gives an immediate explanation of the fact that, in general, no heat-change occurs when two neutral salt solutions are mixed. Since the salts, both before and after mixture, exist mainly as dissociated ions, it is obvious that large thermal effects can only appear when the state of dissociation of the products is very different from that of the reagents. Let us consider the case of the neutralization of a base by an acid in the light of the dissociation theory. In dilute solution such substances as hydrochloric acid and potash are almost completely dissociated, so that, instead of representing the reaction as

HCl + KOH = KCl + H2O,

we must write

+ + +
H + Cl + K + OH = K + Cl + H2O

The ions K and Cl suffer no change, but the hydrogen of the acid and the hydroxyl (OH) of the potash unite to form water, which is only very slightly dissociated. The heat liberated, then, is almost exclusively that produced by the formation of water from its ions. An exactly similar process occurs when any strongly dissociated acid acts on any strongly dissociated base, so that in all such cases the heat evolution should be approximately the same. This is fully borne out by the experiments of Julius Thomsen, who found that the heat of neutralization of one gramme-molecule of a strong base by an equivalent quantity of a strong acid was nearly constant, and equal to 13,700 or 13,800 calories. In the case of weaker acids, the dissociation of which is less complete, divergences from this constant value will occur, for some of the molecules have to be separated into their ions. For instance, sulphuric acid, which in the fairly strong solutions used by Thomsen is only about half dissociated, gives a higher value for the heat of neutralization, so that heat must be evolved when it is ionized. The heat of formation of a substance from its ions is, of course, very different from that evolved when it is formed from its elements in the usual way, since the energy associated with an ion is different from that possessed by the atoms of the element in their normal state. We can calculate the heat of formation from its ions for any substance dissolved in a given liquid, from a knowledge of the temperature coefficient of ionization, by means of an application of the well-known thermodynamical process, which also gives the latent heat of evaporation of a liquid when the temperature coefficient of its vapour pressure is known. The heats of formation thus obtained may be either positive or negative, and by using them to supplement the heat of formation of water, Arrhenius calculated the total heats of neutralization of soda by different acids, some of them only slightly dissociated, and found values agreeing well with observation (Zeits. physikal. Chemie, 1889, 4, p. 96; and 1892, 9, p. 339).


Voltaic Cells.—When two metallic conductors are placed in an electrolyte, a current will flow through a wire connecting them provided that a difference of any kind exists between the two conductors in the nature either of the metals or of the portions of the electrolyte which surround them. A current can be obtained by the combination of two metals in the same electrolyte, of two metals in different electrolytes, of the same metal in different electrolytes, or of the same metal in solutions of the same electrolyte at different concentrations. In accordance with the principles of energetics (q.v.), any change which involves a decrease in the total available energy of the system will tend to occur, and thus the necessary and sufficient condition for the production of electromotive force is that the available energy of the system should decrease when the current flows.

In order that the current should be maintained, and the electromotive force of the cell remain constant during action, it is necessary to ensure that the changes in the cell, chemical or other, which produce the current, should neither destroy the difference between the electrodes, nor coat either electrode with a non-conducting layer through which the current cannot pass. As an example of a fairly constant cell we may take that of Daniell, which consists of the electrical arrangement—zinc | zinc sulphate solution | copper sulphate solution | copper,—the two solutions being usually separated by a pot of porous earthenware. When the zinc and copper plates are connected through a wire, a current flows, the conventionally positive electricity passing from copper to zinc in the wire and from zinc to copper in the cell. Zinc dissolves at the anode, an equal amount of zinc replaces an equivalent amount of copper on the other side of the porous partition, and the same amount of copper is deposited on the cathode. This process involves a decrease in the available energy of the system, for the dissolution of zinc gives out more energy than the separation of copper absorbs. But the internal rearrangements which accompany the production of a current do not cause any change in the original nature of the electrodes, fresh zinc being exposed at the anode, and copper being deposited on copper at the cathode. Thus as long as a moderate current flows, the only variation in the cell is the appearance of zinc sulphate in the liquid on the copper side of the porous wall. In spite of this appearance, however, while the supply of copper is maintained, copper, being more easily separated from the solution than zinc, is deposited alone at the cathode, and the cell remains constant.

It is necessary to observe that the condition for change in a system is that the total available energy of the whole system should be decreased by the change. We must consider what change is allowed by the mechanism of the system, and deal with the sum of all the alterations in energy. Thus in the Daniell cell the dissolution of copper as well as of zinc would increase the loss in available energy. But when zinc dissolves, the zinc ions carry their electric charges with them, and the liquid tends to become positively electrified. The electric forces then soon stop further action unless an equivalent quantity of positive ions are removed from the solution. Hence zinc can only dissolve when some more easily separable substance is present in solution to be removed pari passu with the dissolution of zinc. The mechanism of such systems is well illustrated by an experiment devised by W. Ostwald. Plates of platinum and pure or amalgamated zinc are separated by a porous pot, and each surrounded by some of the same solution of a salt of a metal more oxidizable than zinc, such as potassium. When the plates are connected together by means of a wire, no current flows, and no appreciable amount of zinc dissolves, for the dissolution of zinc would involve the separation of potassium and a gain in available energy. If sulphuric acid be added to the vessel containing the zinc, these conditions are unaltered and still no zinc is dissolved. But, on the other hand, if a few drops of acid be placed in the vessel with the platinum, bubbles of hydrogen appear, and a current flows, zinc dissolving at the anode, and hydrogen being liberated at the cathode. In order that positively electrified ions may enter a solution, an equivalent amount of other positive ions must be removed or negative ions be added, and, for the process to occur spontaneously, the possible action at the two electrodes must involve a decrease in the total available energy of the system.

Considered thermodynamically, voltaic cells must be divided