Page:EB1911 - Volume 09.djvu/273

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
256
ELEMENT


atoms, or of the atomic weights, proved to hold good in every case in which it was tested. All chemical combinations between the several elements are therefore regulated by weight according to certain numbers, one for each element, and combinations between the elements occur only in ratios given by these weights or by simple multiples thereof. Consequently Berzelius regarded Dalton’s atomic hypothesis as proved by experiment, and became a strong believer in it.

At the same time W. H. Wollaston had discovered independently the law of multiple proportions in the case of neutral and acid salts. He gave up further work when he learned of Dalton’s ideas, but afterwards he pointed out that it was necessary to distinguish the hypothetical part in Dalton’s views from their empirical part. The latter is the law of combining weights, or the law that chemical combination occurs only according to certain numbers characteristic for each element. Besides this purely experimental law there is the hypothetical explanation by the assumption of the existence of atoms. As it is not proved that this explanation is the only one possible, the existence of the law is not a proof of the existence of the atoms. He therefore preferred to call the characteristic combining numbers of the elements not “atomic weights” but “chemical equivalents.”

Although there were at all times chemists who shared Wollaston’s cautious views, the atomic hypothesis found general acceptance because of its ready adaptability to the most diverse chemical facts. In our time it is even rather difficult to separate, as Wollaston did, the empirical part from the hypothetical one, and the concept of the atom penetrates the whole system of chemistry, especially organic chemistry.

If we compare the work of Dalton with that of Richter we find a fundamental difference. Richter’s inference as to the existence of combining weights in salts is based solely on an experimental observation, namely, the persistence of neutrality after double decomposition; Dalton’s theory, on the contrary, is based on the hypothetical concept of the atom. Now, however favourably one may think of the probability of the existence of atoms, this existence is really not an observed fact, and it is necessary therefore to ask: Does there exist some general fact which may lead directly to the inference of the existence of combining weights of the elements, just as the persistence of neutrality leads to the same consequence as to acids and bases? The answer is in the affirmative, although it took a whole century before this question was put and answered. In a series of rather difficult papers (Zeits. f. Phys. Chem. since 1895, and Annalen der Naturphilosophie since 1902), Franz Wald (of Kladno, Bohemia) developed his investigations as to the genesis of this general law. Later, W. Ostwald (Faraday lecture, Trans. Chem. Soc., 1904) simplified Wald’s reasoning and made it more evident.

The general fact upon which the necessary existence of combining weights of the elements may be based is the shifting character of the boundary between elements and compounds. It has already been pointed out that Lavoisier considered the alkalis and the alkaline earths as elements, because in his time they had not been decomposed. As long as the decomposition had not been effected, these compounds could be considered and treated like elements without mistake, their combining weight being the sum of the combining weights of their (subsequently discovered) elements. This means that compounds enter in reaction with other substances as a whole, just as elements do. In particular, if a compound AB combines with another substance (elementary or compound) C to form a ternary compound ABC, it enters this latter as a whole, leaving behind no residue of A or B. Inversely, if a ternary compound ABC be changed into a binary one AB by taking away the element C, there will not be found any excess of A or B, but both elements will exhibit just the same ratio in the binary as in the ternary compound.

Experimentally this important fact was proved first by Berzelius, who showed that by oxidizing lead sulphide, PbS, to lead sulphate, PbSO4, no excess either of sulphur or lead could be found after oxidation; the same held good with barium sulphite, BaSO3, when converted into barium sulphate, BaSO4. On a much larger scale and with very great accuracy the inverse was proved half a century later by J. S. Stas, who reduced silver chlorate, AgClO3, silver bromate, AgBrO3, and silver iodate, AgIO3, to the corresponding binary compounds, AgCl, AgBr and AgI, and searched in the residue of the reaction for any excess of silver or halogen. As the tests for these substances are among the most sensitive in analytical chemistry, the general law underwent a very severe test indeed. But the result was the same as was found by Berzelius—no excess of one of the elements could be discovered. We may infer, therefore, generally that compounds enter ulterior combinations without change of the ratio of their elements, or that the ratio between different elements in their compounds is the same in binary and ternary (or still more complicated) combinations.

This law involves the existence of general combining weights just in the same way as the law of neutrality with double decomposition of salts involves the law of the combining weights of acids and bases. For if the ratio between A and B is determined, this same ratio must obtain in all ternary and more complicated compounds, containing the same elements. The same is true for any other elements, C, D, E, F, &c., as related to A. But by applying the general law to the ternary compound ABC the same conclusion may be drawn as to the ratio A : C in all compounds containing A and C, or B : C in the corresponding compounds. By reasoning further in the same way, we come to the conclusion that only such compounds are possible which contain elements according to certain ratio-numbers, i.e. their combining weight. Any other ratio would violate the law of the integral reaction of compounds.

As to the law of multiple proportions, it may be deduced by a similar reasoning by considering the possible combinations between a compound, e.g. AB, and one of its elements, say B. AB and B can combine only according to their combining weights, and therefore the quantity of B combining with AB is equal to the quantity of AB which has combined with A to form AB. The new combination is therefore to be expressed by AB2. By extending this reasoning in the same way, we get the general conclusion that any compounds must be composed according to the formula AmBnCp..., where m, n, p, &c., are integers.

The bearing of these considerations on the atomic hypothesis is not to disprove it, but rather to show that the existence of the law of combining weights, which has been considered for so long as a proof of the truth of this hypothesis, does not necessarily involve such a consequence. Whether atoms may prove to exist or not, the law of combining weights is independent thereof.

Two problems arose from the discoveries of Dalton and Berzelius. The first was to determine as exactly as possible the correct numbers of the combining weights. The other results from the fact that the same elements may combine in different ratios. Which of these ratios Atomic weight determina-tions. gives the true ratio of the atomic weights? And which is the multiple one? Both questions have had most ample experimental investigation, and are now answered rather satisfactorily. The first question was a purely technical one; its answer depended upon analytical skill, and Berzelius in his time easily took the lead, his numbers being readily accepted on the continent of Europe. In England there was a certain hesitation at first, owing to Prout’s assumption (see below), but when Turner, at the instigation of the British Association for the Advancement of Science, tested Berzelius’s numbers and found them entirely in accordance with his own measurements, these numbers were universally accepted. But then a rather large error in one of Berzelius’s numbers (for carbon) was discovered in 1841 by Dumas and Stas, and a kind of panic ensued. New determinations of the atomic weights were undertaken from all sides. The result was most satisfactory for Berzelius, for no other important error was discovered, and even Dumas remarked that repeating a determination by Berzelius only meant getting the same result, if one worked properly. In later times more exact measurements, corresponding to the increasing art in analysis, were carried out by various workers, amongst