Page:EB1911 - Volume 09.djvu/274

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
ELEMENT
257


whom J. S. Stas distinguished himself. But even the classical work of Stas proved not to be entirely without error; for every period has its limit in accuracy, which extends slowly as science extends. In recent times American chemists have been especially prominent in work of this kind, and the determinations of E. W. Morley, T. W. Richards and G. P. Baxter rank among the first in this line of investigation.

During this work the question arose naturally: How far does the exactness of the law extend? It is well known that most natural laws are only approximations, owing to disturbing causes. Are there disturbing causes also with atomic weights? The answer is that as far as we know there are none. The law is still an exact one. But we must keep in mind that an absolute answer is never possible. Our exactness is in every case limited, and as long as the possible variations lie behind this limit, we cannot tell anything about them. In recent times H. Landolt has doubted and experimentally investigated the law of the conservation of weight.

Landolt’s experiments were carried out in vessels of the shape of an inverted U, each branch holding one of the substances to react one on the other. Two vessels were prepared as equal as possible and hung on both sides of a most sensitive balance. Then the difference of weight was determined in the usual way by exchanging both the vessels on the balance. After this set of weighings one of the vessels was inverted and the chemical reaction between the contained substances was performed; then the double weighing was repeated. Finally also the second vessel was inverted and a third set of weighings taken. From blank experiments where the vessels were filled with substances which did not react one on the other, the maximum error was determined to 0.03 milligramme. The reactions experimented with were: silver salts with ferrous sulphate; iron on copper sulphate; gold chloride and ferrous chloride; iodic acid and hydriodic acid; iodine and sodium sulphite; uranyl nitrate and potassium hydrate; chloral hydrate and potassium hydrate; electrolysis of cadmium iodide by an alternating current; solution of ammonium chloride, potassium bromide and uranyl nitrate in water, and precipitation of an aqueous solution of copper sulphate by alcohol. In most of these experiments a slight diminution of weight was observed which exceeded the limit of error distinctly in two cases, viz. silver nitrate with ferrous sulphate and iodic acid with hydriodic acid, the loss of weight amounting from 0.068 to 0.199 mg. with the first and 0.047 to 0.177 mg. with the second reaction on about 50 g. of substance. As each of these reactions had been tried in nine independent experiments, Landolt felt certain that there was no error of observation involved. But when the vessels were covered inside with paraffin wax, no appreciable diminution of weight was observed.

These experiments apparently suggested a small decrease of weight as a consequence of chemical processes. On repeating them, however, and making allowance for the different amounts of water absorbed on the surface of the vessel at the beginning and end of the experiment, Landolt found in 1908 (Zeit. physik. Chem. 64, p. 581) that the variations in weight are equally positive and negative, and he concluded that there was no change in weight, at least to the extent of 1 part in 10,000,000.

There is still another question regarding the numerical values of the atomic weights, namely: Are there relations between the numbers belonging to the several elements? Richter had arranged his combining weights according to their magnitude, and endeavoured The periodic arrange-ment. to prove that they form a certain mathematical series. He also explained the incompleteness of his series by assuming that certain acids or bases requisite to the filling up of the gaps in the series, were not yet known. He even had the satisfaction that in his time a new base was discovered, which fitted rather well into one of his gaps; but when it turned out afterwards that this new base was only calcium phosphate, this way of reasoning fell into discredit and was resumed only at a much later date.

To obtain a correct table of atomic weights the second question already mentioned, viz. how to select the correct value in the case of multiple proportions, had to be answered. Berzelius was constantly on the look-out for means to distinguish the true atomic weights from their multiples or sub-multiples, but he could not find an unmistakable test. The whole question fell into a terrible disorder, until in the middle of the 19th century S. Cannizzaro showed that by taking together all partial evidences one could get a system of atomic weights consistent in itself and fitting the exigencies of chemical systematics. Then a startling discovery was made by the same method which Richter had tried in vain, by arranging all atomic weights in one series according to their numerical values.

The Periodic Law.—The history of this discovery is rather long. As early as 1817 J. W. Döbereiner of Jena drew attention to the fact that the combining weight of strontium lies midway between those of calcium and barium, and some years later he showed that such “triads” occurred in other cases too. L. Gmelin tried to apply this idea to all elements, but he realized that in many cases more than three elements had to be grouped together. While Ernst Lenssen applied the idea of triads to the whole table of chemical elements, but without any important result, the other idea of grouping more than three elements into series according to their combining weights proved more successful. It was the concept of homologous series just developed in organic chemistry which influenced such considerations. First Max von Pettenkofer in 1850 and then J. B. A. Dumas in 1851 undertook to show that such a series of similar elements could be formed, having nearly constant differences between their combining weights. It is true that this idea in all its simplicity did not hold good extensively enough; so J. P. Cooke and Dumas tried more complicated types of numerical series, but only with a temporary success.

The idea of arranging all elements in a single series in the order of the magnitude of their combining weights, the germ of which is to be found already in J. B. Richter’s work, appears first in 1860 in some tables published by Lothar Meyer for his lectures. Independently, A. E. B. de Chancourtois in 1862, J. A. R. Newlands in 1863, and D. I. Mendeléeff in 1869, developed the same idea with the same result, namely, that it is possible to divide this series of all the elements into a certain number of very similar parts. In their papers, which appeared in the same year, 1869, Lothar Meyer and Mendeléeff gave to all these trials the shape now generally adopted. They succeeded in proving beyond all doubt that this series was of a periodic character, and could be cut into shorter pieces of similar construction. Here again gaps were present to be filled up by elements to be discovered, and Mendeléeff, who did this, predicted from the general regularity of his table the properties of such unknown elements. In this case fate was more kind than with Richter, and science had the satisfaction of seeing these predictions turn out to be true.

The following table contains this periodic arrangement of the elements according to their atomic weight. By cutting the whole series into pieces of eight elements (or more in several cases) and arranging these one below another in the alternating way shown in the table, one finds similar elements placed in vertical series whose properties change gradually and with some regularity according to their place in the table. Not only the properties of the uncombined elements obey this rule, but also almost all properties of similar compounds of the elements.

He 4.0 Li 7.03 Be 9.1 B 11.0 C 12.00 N 14.01 O 16.00 F 19.0 .. .. ..
 Ne 20  Na 23.00  Mg 24.32  Al 27.1  Si 28.4  P 31.0  S 32.06  Cl 35.45 .. .. ..
Ar 39.9 K 39.15 Ca 40.1 Sc 44.1 Ti 48.1 V 51.2 Cr 52.0 Mn 55.0 Fe 55.9, Ni 58.7, Co 59.0
..  Cu 63.6  In 65.4  Ga 70  Ge 72.5  As 75.0  Se 79.2  Br 79.96 .. .. ..
Kr 83.0 Rb 85.5 Sr 87.6 Y 89.0 Zr 90.6 Cb(Nb) 94 Mo 96.0 .. Ru 101.7, Rh 103.0, Pd 106.5
..  Ag 107.93  Cd 112.4  In 115  Sn 119.0  Sb 120.2  Te 127.6  I 126.97 .. .. ..
Xe 130.7 Cs 132.9 Ba 137.4 La 138.9 Ce &c. 140 Ta 181 W 184 .. Os 191, Ir 193.0, Pt 194.8
..  Au 197.2  Hg 200.0  Tl 204.1  Pb 206.9  Bi 208.0 .. .. .. .. ..
.. .. Ra 225 .. Th 232.5 .. U 238.5 .. .. .. ..